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Abstract 

The notion of a viability constraint that determines the range of 
conditions under which a biological individual can survive plays 
a central role in work in artificial life and theoretical biology. 
However, while there has been considerable attention paid to the 
case where this constraint is defined externally, very little work 
has been done on the more natural case where this constraint 
arises intrinsically from the operational closure of the individual 
itself. Using a glider in the Game of Life as a toy model, we show 
how to systematically derive the intrinsic viability constraint of 
an emergent individual from its closed network of constitutive 
process interdependencies. 

Introduction 
One of the most fundamental features of any living system is 
the boundary between life and death. On one side of this 
boundary, the system exists as a distinct entity, capable of 
engaging its environment as an autonomous individual. On the 
other side of this boundary, there is no longer any system to 
discuss; inquiries into its state or goals or behavior become 
meaningless. This boundary is often envisioned as a kind of 
constraint – a viability constraint – on the system’s state 
variables which delineates its domain of existence. 
      It is useful to distinguish two broad classes of viability 
constraint: extrinsic and intrinsic. An extrinsic viability 
constraint is one imposed from the outside by some external 
agency. For example, a protocell model may be considered to 
have “died” if the concentration of some essential chemical 
falls below some lower limit or its osmotic pressure exceeds 
some upper limit. While this might seem entirely artificial and 
arbitrary, for pragmatic reasons it is by far the most common 
approach in theoretical and computational biology and artificial 
life. The cybernetician W. Ross Ashby, who was one of the first 
to make explicit the concept of a viability constraint, conceived 
of it as a compact subset of a dynamical system’s state space 
involving the system’s essential variables (Ashby, 1960). 
Similar notions can be found in control theory (Aubin, 1991), 
adaptive behavior (Beer, 1995), health (Voit, 2009), artificial 
life (Barandarian & Egbert, 2013), and computational cell 
biology (Ghaffarizadeh et al., 2018). Recent work in this area 
has focused on formally characterizing the global structure of 

viability outcomes when a dynamical system possesses such 
constraints (McShaffrey & Beer, 2023). 
 

      In contrast, an intrinsic viability constraint arises from 
within a living system itself rather than being externally 
imposed. What does this even mean? A key requirement for a 
system to possess an intrinsic viability constraint is that it must 
be systemically precarious, which can only happen if its 
identity is emergent from some underlying substrate to which 
it can subsequently decay when its integrity as an individual is 
lost (Beer & Di Paolo, 2023). In this case, the viability limits 
arise from the organization and operation of the constituent 
components of the system itself. Whereas examples of extrinsic 
viability constraints are ubiquitous, despite the fact that 
intrinsic viability is arguably the more natural and fundamental 
concept, there are very few examples of such emergent 
individuals in the literature (Varela, Maturana & Uribe, 1974; 
Ono & Ikegami, 2000; McMullin, 2004; Agmon et al., 2016). 
Even for these few examples, no explicit construction of the 
resulting intrinsic viability constraint has ever been carried out. 
 

      Developing a theory of viability has primarily been an 
independent endeavor, but the subject also has a long-standing 
history with Maturana and Varela’s formulation of the 
organization of living systems, autopoiesis (Maturana & 
Varela, 1980). Varela (1979) suggested an equivalence 
between the two concepts. Later, Bourgine and Varela (1992) 
argued for a close relation instead, with viability specifying the 
bounds within which the organization's operation would 
continue. Previously, these connections were presented 
conceptually, with the assumption that the viability domain was 
already known to the observer.  
 

      In this paper, we show how to derive the intrinsic viability 
constraint of an emergent individual from first principles using 
a glider in the Game of Life cellular automaton as an example. 
We first present the organization of a glider as a closed process 
dependency graph. We then reconstruct the spatial embedding 
of this graph from its dependency structure. Next, we show how 
the spatially embedded organization determines a glider’s 
graph of identity-preserving interactions. Finally, we extract 
and visualize its intrinsic viability constraint from this 
interaction graph. 
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Process Dependency Network 
Our derivation of an intrinsic viability constraint builds on our 
previous investigations of a glider in Conway’s Game of Life 
(GoL) cellular automaton as a model of an emergent individual 
(Beer, 2004). In this model, the underlying GoL update rules 
determine a kind of physics (called the Conway physics), which 
supports a kind of spatial chemistry, which in turn supports the 
emergence of closed networks of processes whose self-
generating and self-bounding nature can be analyzed from the 
perspective of Maturana and Varela’s (1980) notion of 
autopoiesis. 
      In this framework, a process is a rule for transforming a 
local spatial configuration of reactants into a product (Figure 
1A). Processes fall into four main classes: production (blue), 
destruction (red), 1-maintenance (black), and 0-maintenance 
(white) according to their action on the cell at their center, an 
action determined by the states of the immediately surrounding 
cells according to the Conway physics. By tracking how the 
product of each process in turn enables other processes for an 
isolated glider in an otherwise empty universe, one can extract 
the closed process dependency network that constitutes what 
we later called the vacuum glider organization (Beer, 2015). 
      In order to generalize this description of a glider’s 
organization to nonempty universes, we subsequently 
introduced the notion of a partial process (Beer, 2020a). 
Briefly, a partial process is a regular process some of whose 
triggering cells have been replaced by an “unknown” state in 
order to represent entire classes of actual processes (Figure 1B). 
Partial processes are deployed in situations, such as those that 
occur along the interface of a glider with its environment, in 
which the actual states of some cells are unknown until the 
glider is embedded in a particular environment. In this case, the 
partial boundary processes take on different roles depending on 
the context (indicated by the triangular split of the central cells 
in Figure 1B). For example, the partial process illustrated to the 
left of Figure 1B represents all processes whose central cell is 
currently OFF and whose four cells outlined in black take on 
the given values. Depending upon the sum of the remaining 
unspecified cells (yellow), this process could be either a 0-
maintainance or a production process. The right of Figure 1B 
shows the analogous situation when the central cell is currently 
ON rather than OFF. 
      By replacing the boundary processes in the vacuum glider 
organization with the corresponding partial processes and 
tracing out the consequences of different environmental 
contexts on these processes, one obtains the generalized glider 
organization (Beer, 2020a). This organization, which has not 
previously been presented in its entirety, is shown in Figure 2. 
This graph includes a total of 352 processes and 5	912 
dependency links. Note that the same process may appear 
multiple times but still have distinct identities because their 
dependencies differ, a consequence of the spatiality of the 
chemistry supported by the Conway physics. Note also that 32 
of these processes (circled in red) receive only incoming 
dependency links and thus do not participate in the operational 
closure of the glider; they represent processes associated with 
“waste” components that the glider sheds during its operation. 

Local Spatial Embedding 

A glider’s organization is a topological entity; it depends only 
on the interdependencies between a glider’s constituent 
processes. However, as we will show in this section, the spatial 
structure of a glider can be fully recovered from this 
dependency network, at least up to embedding symmetries. 

 
 

Figure 1: Processes in the Game of Life. (A) The action of 
a production process (blue central square) and a destruction 
process (red central square) on a configuration of 
components, with brown links indicating dependencies 
between components and processes. (B) A partial process 
can represent a set of complete processes. All processes 
shown contain the same cell states in the L-shaped region 
outlined in black, with the other cell states varying. The left 
partial process represents all such processes triggered by a 
3 × 3 configuration whose central cell is currently OFF. 
Depending on the sum Σ of the values of the unspecified 
yellow cells, the partial process can become either a 0-
maintainence or production process, hence the split 
white/blue central cell. The right partial process represents 
the analogous situation when the central cell is currently 
ON, triggering either a 1-maintenance or destruction 
process depending on the sum of the unspecified yellow 
cells. 
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      The basic idea is as follows. Each process describes an 
“atom” of geometry through the relative spatial relations of its 
nine constituent cells that together constrain what 
configurations of adjacent processes are possible. Furthermore, 
the dependency links between the cells of different processes 
similarly determine a set of geometrical constraints that any 
embedding of the processes must satisfy. For example, given a 
precursor process, the set of processes it enables must be 
adjacent and thus arranged in such a way that each process has 
its neighborhood constraints satisfied. The problem of 

assembling a spatial embedding from these constraints thus 
becomes a kind of jigsaw puzzle that can be solved 
algorithmically. 
      The algorithm has two main steps. First, we create a set of 
local spatial embeddings for each process by splitting the 
processes enabled by its outgoing dependency links into 
subsets that agree on both the product and the local spatial 
arrangement (Figure 3A). Second, we repeatedly merge pairs 
of local embeddings that contain the same processes in such a 
way as to respect the geometry of each until no further merges 

 
 
Figure 2: The (generalized) glider organization expressed as a graph of dependency links between the products and enabling 
conditions of a closed set of processes. The processes circled in red receive only incoming dependency links so they are not part 
of the closure; they represent processes involving “waste” components that the glider sheds during its operation. 
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are possible (Figure 3B). Note that if the “waste” processes are 
removed from the process dependency graph (Figure 2), they 
need to be reintroduced here in an additional step by completing 
any dangling dependencies in order for this algorithm to fully 
recover the spatial embedding. 
      The result of applying this algorithm to the generalized 
glider organization presented in the previous section is shown 
in Figure 4. This result completes the partial visualization of 
the local spatial embedding of the glider organization that was 
shown in (Beer, 2020a) and used as the starting point for the 
work described therein. Note that the spatial embedding is only 
semi-local; the relative spatial relations within each of the 
sixteen distinct process sets are made explicit, but not the 
spatial relations between those distinct process sets. 

Interaction Graph 
The spatially embedded process dependency graph fully 
describes a glider’s constitution, characterizing the way that its 
components and their interactions give rise to and maintain the 
coherent identity of this emergent individual. However, one can 
also describe the glider as a unitary whole interacting with its 
environment. Maturana termed the latter description a “simple 

unity” and the former description a “composite unity” 
(Maturana & Varela, 1980). For a simple unity, one is most 
interested in characterizing the possible interactions with its 
environment in which it can engage. This “cognitive domain” 
(Maturana & Varela, 1980) describes all possible structural 
configurations of a glider and the sets of environmental 
perturbations that trigger transitions between them. 
 

      One way to compute a glider’s interaction graph is to 
exhaustively enumerate a glider’s response to each possible 
environmental perturbation (Beer, 2014). However, in more 
recent work, we showed that it is also possible to derive a 
glider’s interaction graph directly from its spatially embedded 
process dependency network (Beer, 2020a). The derivation 
proceeds in three steps (Figure 5). 
 

      The first step is a simple relabeling of the process 
dependency links (Figure 5A). All dependency links between 
any two pairs of  glider process embeddings are colored the 
same way, with the chosen color scheme deployed consistently 
so as to respect the symmetries of the spatially embedded 
dependency network. 
 

      The second step involves an abstraction: each of the sixteen 
glider process embeddings is replaced by the corresponding 

 

 
 
 

Figure 3: An illustration of each of the two key steps involved in spatially embedding a process dependency network. (A) Each 
subset of a process’s dependency links that agree on a product and a consistent spatial arrangement imply a partial embedding of 
its subsequent processes. (B) Two partial embeddings that contain overlapping processes (highlighted in red) can be merged. 
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configuration of components that trigger them (Figure 5B). 
After this step, we see that each process embedding 
corresponds to a different glider configuration, corresponding 
to the four different orientations and two different chiralities of 
each of the two possible glider forms. 
      The third and final step is to collapse the bundles of process 
dependency links between all pairs of glider configurations to 
a single edge (Figure 5C). The resulting graph is identical to the 
glider interaction graph that has previously been reported 
(Beer, 2014). Here each node represents a possible glider 
configuration and each color of link represents a class of 
identity-preserving environmental perturbations that trigger the 
corresponding transition. We also showed how to explicitly 

calculate every environment configuration belonging to each of 
these six classes of nondestructive perturbations (Beer, 2014). 
Of course, this interaction graph only describes a glider’s 
response to a given environmental perturbation. In order to 
completely determine the possible lives that a glider can live, 
one must also characterize the environment’s responses to 
glider perturbations, as well as how these two interaction 
graphs interlock via structural coupling (Beer, 2020b).  
      Note that, strictly speaking, Figure 5C shows only the 
translation symmetry reduced glider interaction graph. In order 
to generate the full interaction graph, one must unroll this graph 
across all possible locations in a given GoL universe (Beer, 
2020b). 

 
 
Figure 4: The local spatial embedding of the process dependency graph shown in Figure 2 as produced by the algorithm described 
in the main text and outlined in Figure 3. 
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Viability Constraint 
The glider interaction graph shown in Figure 5C gives us every 
environmental perturbation that a glider can survive. Its 
complement gives us every environmental perturbation that 
destroys a glider. Together, this information can be used to 
derive the glider’s intrinsic viability constraint. 
      The resulting viability constraint is illustrated 
schematically in Figure 6. The space 𝒢(",$) in which this 
constraint is visualized is the space of all sets of GoL cells that 
could contain a glider at its center, surrounded by that glider’s 

immediate environment (called the 1-environment), 
surrounded by its secondary environment (called the 2-
environment). It is necessary to include the 2-environment 
because when a glider moves, it occupies some of the cells that 
had previously constituted its 1-environment, whose states are 
co-determined by its 2-environment. Since there are 78 GoL 
cells in each element, 𝒢(",$) contains 2&' elements.  
 

      The glider interaction graph divides 𝒢(",$) into three 
subsets. The union 	int(𝒱) ∪ 𝜕𝒱 contains all configurations 
possessing a central glider, with the viability interior int(𝒱) 
(light gray) including all configurations whose central glider 
will persist to the next step and the viability boundary 𝜕𝒱 (dark 

 

 
 

Figure 5: Steps in the derivation of a glider’s interaction graph from the local spatial embedding of the glider process dependency 
network shown in Figure 4. (A) Dependency links between any pair of process sets are colored in a way consistent with the 
symmetries of Figure 4. (B) Each process set is replaced by the spatial arrangement of components that trigger them. (C) The 
bundle of like-colored dependency links between any two glider configurations can be reduced to a single transition link, reducing 
a glider’s spatially embedded process dependency network to its interaction graph. 
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gray) containing all configurations whose central glider will 
perish at the next step (in this discrete space, int(𝒱) and 𝜕𝒱 are 
distinct sets). We will refer to this union as the glider’s viability 
region 𝒱 (gray). The complement of 𝒱, 𝒱2 , includes all elements 
of 𝒢(",$) that do not possess a central glider. Calculations show 
that int(𝒱) and 𝜕𝒱 contain 183	360	743	800	832 and 
143	876	619	822	432	256 elements, respectively, with 𝒱2 
containing 302	231	310	843	676	727	443	456  elements. 
      Note that the Conway physics induces a dynamics on 𝒢(",$) 
that is only partly represented in Figure 6. As described by the 
glider interaction graph, elements in int(𝒱) transform into 
other elements in int(𝒱) through nondestructive perturbations. 
In addition, because these configurations are embedded in 
larger environments that can modify a glider’s 2-environment, 
elements in int(𝒱) can transform into elements of 𝜕𝒱. In turn, 
elements of 𝜕𝒱 inexorably transform into elements of 𝒱2  as the 
central glider disintegrates, as indicated by the red arrows. 
Finally, elements of 𝒱2  can transform into elements of int(𝒱) or 
𝜕𝒱 as new gliders are spontaneously created from glider 
precursor configurations. Interestingly, these 𝒱 → 𝒱, 𝒱 → 𝒱2 , 
and 𝒱2 → 𝒱 transitions correspond precisely to the glider 
persistence, destruction, and creation operators described in 
(Beer, 2020c). 

      Studying the process dependencies and the resulting 
interaction graph reveals a more nuanced picture of essential 
variables than is typically presented in the extrinsic viability 
literature, where the set is pre-determined and fixed. Here, the 
components that participate in a glider’s continued viability 
depend on the particular transition in its cognitive domain. For 
example, a glider’s autopoiesis will not rely on boundary cells 
that it “sheds” in its movement, but the direction of movement 
depends on the joint state of the glider and its (1,2)-
environment. By this framing, the particular set of “essential 
variables” at play in any given instant is transition-dependent 
and includes environmental elements. 
 

      Having fully characterized the glider’s generalized 
organization and viability constraint, we can now draw more 
explicit connections between the nature of autopoiesis and 
viability. For example, autopoiesis is characterized by the 
closure of processes that results in the continuation of the 
glider. Viability, on the other hand, is the domain of 
configurations where the glider can be distinguished, including 
those that will immediately lead to its death. Thus, while viable 
transformations of the glider’s structure are subservient to 
autopoiesis, the viability constraint specifies the physical limits 
at which the organization will cease to exist. This makes 

 

 
Figure 6: A schematic illustration of the structure of a glider’s derived intrinsic viability constraint. The viability constraint 𝒱 
(gray) contains all configurations that possess a central glider, whereas its complement 𝒱2 contains all configurations that do not. 
𝒱 can be further divided into an interior int(𝒱) (light gray) and a boundary 𝜕𝒱 (dark gray), with	𝒱 = int(𝒱) ∪ 𝜕𝒱. The region 
int(𝒱) contains all configurations that will remain in 𝒱 after the next transition, whereas 𝜕𝒱 contains all configurations that will 
leave 𝒱 (indicated by the red arrows) after the next transition. A few example configurations from each region are shown. 
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viability a function of both the organization and the structural 
characteristics of the glider and its immediate environment. 

Discussion 
The viability of a biological organism is determined not from 
the outside, but from within, based on the continued integrity 
of the constitutive network of processes that underlie its 
operation. In an attempt to characterize how such an intrinsic 
viability constraint arises from first principles, we have 
examined a glider in the Game of Life as a toy model of an 
emergent individual. Specifically, starting from a glider’s 
organization as a closed network of process dependencies, we 
have shown how to incrementally derive (1) its local spatial 
embedding, (2) its interaction graph, and, ultimately, (3) the 
intrinsic viability constraint implicit in that organization. We 
have also begun to examine the nontrivial internal structure of 
this intrinsic viability constraint. To our knowledge, this is the 
first time that an intrinsic viability constraint has been derived 
and characterized for any emergent individual. 
      Having a genuine instance of a derived viability constraint 
allows the rare opportunity to reflect on some broader themes 
surrounding the subject. For example, one characterization of 
adaptivity discusses organisms as distinguishing between 
dynamics that will result in approaching or moving away from 
the boundary of their viability region (Di Paolo, 2005; 2009). 
By this framing, agents sense their viability constraints and 
respond to them via structural changes. Contrary to this, we 
have shown that the viability region of the 
glider originates from the nature of its potential structural 
transitions. While the glider is sensitive to its own state and that 
of its immediate environment, it cannot sense the 2-
environment cells that participate in the boundary of the 
viability region. This raises the distinction between the glider 
having access to its set of potential essential variables versus 
the viability boundary itself, consistent with previous work 
demonstrating that adaptivity does not require an explicit 
sensing of viability’s limits (Agmon, Gates & Beer, 2016). It 
has also been shown that an agent can engage in viable behavior 
without sensing essential variables directly so long as it can 
sense an adequate proxy, although this behavior may be more 
fragile (Agmon & Beer, 2014; Egbert & Pérez-Mercader, 
2016). 
      There are also comparisons to be made between the 
anatomy of the glider’s intrinsically generated viability region 
and the viability constraints that we extrinsically define. In 
extrinsic viability, the constraints are defined entirely 
separately of the equations that govern the dynamics. The result 
of this is that the states populating the boundary can be 
characterized by change vectors that push the system into the 
terminal region, pull it back into the interior, or run tangent. In 
the intrinsic case, 𝒢(",$) configurations are assigned to the 
boundary because they result in terminal transitions, and 
therefore border it. This difference is especially notable given 
how important the different vector types are in the global 
analysis of extrinsic viability (McShaffrey & Beer, 2023). 
      While it may seem as though the intrinsic derivation 
escapes some of the artificial decisions of the extrinsic case, it 

is worth noting that, even here, there is a sense in which the 
structure we derive is still partially observer dependent. 
Currently, we say that a GoL unity has disintegrated if its 
organization is disrupted to any degree. If we instead decided 
that the unity survived if it managed to reconstitute 
immediately following any disruption, this would change the 
interior structure and boundary of the viability region. 
      Despite the differences in their properties, co-developing 
theories of intrinsic and extrinsic viability allows us to draw on 
the strengths of both. Since models of intrinsic viability are the 
closest to the naturalistic case, they can teach us about the 
foundation of viability constraints, and in some cases it may 
even be possible to extract them to utilize in extrinsic models. 
Extrinsic viability, on the other hand, gives us a framework to 
approach problems where modeling a full, emergent individual 
is not possible. There is also the possibility of using 
classification schemes in extrinsic viability to further direct 
research on intrinsic viability. For example, viability space 
decomposition carves up extrinsic models into asymptotically 
and transiently viable regions based on whether the agent will 
persist or die on a finite time horizon (McShaffrey & Beer, 
2023). Merging the glider with an environment gives an 
autonomous dynamical system where similar global 
classifications should be possible, building on previous work 
on structural coupling in GoL (Beer, 2020b). 
      Looking forward, it would be easy to apply the procedure 
outlined in this paper to derive the intrinsic viability constraints 
for other emergent individuals in the Game of Life. Extension 
to other discrete cellular automata and discrete spatial artificial 
chemistries should also be relatively straightforward. However, 
generalizing our approach to the continuous case, such as 
reaction-diffusion systems (Froese, Virgo & Ikegami, 2011), 
continuous spatial artificial chemistries (Dittrich, Ziegler & 
Banzhaf, 2001), or continuous cellular automata such as Lenia 
(Chan, 2019), raises a number of subtle issues, mostly deriving 
from spatiality. For example, a continuous emergent individual 
is constituted by a manifold of processes rather than a discrete 
grid, and its process dependencies also form a manifold rather 
than a discrete graph. It is not at all clear what the continuous 
generalization of a discrete process dependency network should 
be and therefore it is not yet clear how to carry out the steps of 
the procedure outlined in this paper for the case of a continuous 
emergent individual. An interesting approach might be to 
investigate the Larger Than Life cellular automaton (Evans, 
2003) and its continuum limit RealLife  (Pivato, 2007) as an 
incremental path from the discrete to the continuous case (Gaul, 
2024). 
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