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Abstract

An analysis of the language we use in scientific practice is critical to developing more rigorous
and sound methodologies. This article argues that how certain methods of description are commonly
employed in cognitive science risks obscuring important features of an agent’s cognition. We propose
to make explicit a method of description wherein the concept of cognitive distinctions is the core
principle. A model of referential communication is developed and analysed as a platform to compare
methods of description. We demonstrate that cognitive distinctions, realised in a graph-theoretic
formalism, better describe the behaviour and perspective of a simple model agent than other less
systematic or natural language dependent methods. We then consider how different descriptions
relate to one another in the broader methodological framework of minimally cognitive behaviour.
Finally, we explore the consequences of, and challenges for, cognitive distinctions as a useful concept
and method in the toolkit of cognitive scientists.

Keywords: cognitive distinctions, method of description, conditions of observation, natural lan-
guage, referential communication, interaction graph

1 Introduction

Language plays an outstanding role in how we think about scientific questions and go about answering
them. This is evident not only in such questions and answers being articulated in propositions, but also
in the metaphors we use; for instance, the use of informational concepts in biology (Oyama, [2000) and
the computer metaphor in cognitive science (Newell & Simon, [1976; Winograd & Flores, [1986). That
is, the language in which questions are posed greatly shapes our intuitions about the sorts of things we
are studying and the form of our scientific practice. It should be clear, then, that a careful evaluation
of such language is an essential part of evaluating our scientific paradigms, not only towards a greater
refinement of our theories, but also to ensure that we do not miss blind-spots in adhering to a particular
pattern of thought.

In cognitive science, the influence of language is most prominent in the various ontologies of cognitive
systems: brains as computers, agents as dynamical systems (Van Gelder, [1998)), extended minds (Clark
& Chalmers, 1998)), and so on. While these differences of theoretical framework are quite apparent in
their consequences, there may be more subtle variations of language within a given framework whose
consequences are equally significant. This article seeks to highlight how the language used to describe
the behaviour of a system — in cognitive terms — influences the capacities we attribute to that system
and the grounds on which we do so. Indeed, we show that methods of description frequently employed
in this context can in fact obscure important features of a system’s cognition. This is not to say that
such methods misrepresent cognitive phenomena, but that their application is ill-suited to certain tasks
where we are concerned with the behaviour and perspective of non-human systems. By “perspective”
here, we mean what the world looks like for the agent, that is, its Umwelt (von Uexkiill, [1957,/1992).



We use a simple model of communication as a platform to compare descriptions. It is well-suited
to the task since, as language-users, we have strong intuitions about the nature of communication and
what it looks like. As will be shown, how these intuitions are embedded in our language can greatly
influence what we do and do not pay attention to or emphasize in a model. Moreover, communication
is interesting in its own right, not only as a means of clarifying linguistic concepts in simpler cases and
with greater evolutionary continuity, but also as a component of a general theory of adaptive behaviour
(Beer, [1995] [1997; Williams et al., 2008]). But work towards such a theory demands a clear account of
our methods.

Prior to such an account, we also need a clearer view of the theoretical framework within which those
methods are situated. The present article uses concepts from the work of Maturana and Varela on the
biology of cognition (Maturana & Varela, |1980, [1987; Varela,|1979), and Varela’s later work on enaction
(Varela et al., 2017). From this perspective, we see cognition not as a process of computing outputs
from sensory inputs, but rather as the continuous and dynamic interaction between an agent and its
environment. In this framing, the actions of an agent are not functions of sensory inputs. They are,
instead, compensations for external perturbations co-determined by the agent’s internal dynamics; the
same perturbation can elicit different behaviours depending on the internal state of the system perturbed.
The set of all internal states of a system and the perturbations that induce transitions between them
constitute what Maturana and Varela call that system’s cognitive domain, or domain of interaction
(Beer, [2014; Maturana & Varela, [1980). The cognitive domain, in other words, is what structures the
world of our experience and is determined by our actions within it. Using this framework, explaining
cognition is a matter of showing how the dynamics of agent-environment systems give rise to coherent
behaviour; it is not explained by how the agent represents a pre-given environment. Furthermore, subsets
of the cognitive domain can be specified, forming specialised domains in their own right. For example,
communicative interactions take place in what Maturana and Varela call a consensual domain, in which
agents in maintained coupling serve as sources of mutual perturbation for one another, thus shaping each
other’s paths through their respective cognitive domains. We will not use the term ‘consensual domain’
in this article, nor will we commit to a particular definition of communication, but there will be frequent
mention of the cognitive domain of both ourselves and the model agents we describe.

More formally, we can take a dynamical systems perspective on whole agent-environment systems
and analyse how communicative behaviour is generated from the dynamic interaction between agent and
environment (Beer, [1995). Toy models can be used to fully analyse a minimal case of a given behaviour
from this perspective (Beer, [1996). Referential communication has been modelled frequently in this
way, beginning with Williams et al. (2008). Communication is referential when it is about matters
temporally and/or spatially displaced from the immediate “here and now.” Though our concerns are
with communication in general, reference is a useful feature of a model, as it acts as a constraint that
stands in for the lives of otherwise independently acting agents. For instance, Williams et al. (2008)) used
an evolutionary algorithm to generate agents to solve a task in which a sender agent would have to move
itself in the sensory range of a receiver agent such that, in response to the sender’s particular pattern
of movement, the receiver would move to some target location and stay there (and the receiver has no
information about the target’s location prior to interaction). When no restrictions are placed on how the
agents may move, the sender either shepherds the receiver directly to the target location, or else sits at
that location, waiting for the receiver to bump into it and stop. Both of these solutions, intuitively, do
not capture something important about communication, that being that the receiver’s behaviour should
at some point be independent of the sender’s after some period of mutual interaction.

Thus, to the end of comparing methods of description, this article proceeds as follows. First, we
characterize what we see as the default method of cognitive description usually employed in modelling
practice; this is the reference against which we compare the method we later introduce. Second, we
identify its main problem as the conflation of conditions of observation and the cognitive capacities asso-
ciated with them (we elaborate on these concepts in the next section). Third, we present an alternative
method of description — by focusing on cognitive distinctions — that tries to alleviate this. We present
a model of referential communication and describe a particular sender-receiver pair using both methods
before comparing them. Finally, we discuss further implications of the method and some challenges.

2 Methods of Description

We have thus far been rather vague about what we mean by communication, and this is deliberate, since
how one chooses to do this depends on their method of description and how they apply that method to



natural systems — language in humans, the waggle dance in bees (Chittka, 2023} Frisch, [1967)), etc. —
and artificial systems.

In the models on which this article builds, establishing what communication is generally follows a
basic pattern. We consider certain examples of communication in natural systems and then abstract
general characteristics of these behaviours in terms of spatio-temporal patterns. This generally results in
a list of constraints on spatial trajectories that can be implemented in a model. For example, Williams
et al. (2008) propose the following, applicable to a single sender-receiver pair and an object of reference:

1. The future behaviour of the receiver is sufficiently constrained by interaction with the sender,
2. The receiver’s behaviour should vary with properties of the referent,
3. The sender-receiver interaction should have a degree of separation from the referent,

where ‘behaviour’ can be taken as synonymous with spatial trajectory. Most other models have followed
Williams et al. (2008]) in this regard, adding further complications to address specific questions such
as information dynamics (Manicka, 2012), role negotiation (Campos & Froese, [2017)), and behavioural
flexibility (Yao et al., [2023). The exception to this is Fox and Bullock (2023]) who use the teleosemantic
notion of ‘proper function’ introduced by Millikan (1984} 1989)):

“Referential communication occurs when the signal-producing behaviour of one agent (the
signaller) has the proper function to adapt a second agent (the receiver), via its sense organs,
to some state of affairs, and when this second agent’s signal-consuming behaviour has the
proper function to be so adapted.” (Fox & Bullock, 2023, italics in original)

Here, the proper function of a behaviour is the function that, when performed by the agent’s ancestors,
led to the genes for that behaviour being propagated. While we do not find this to be a very compelling
definition of communication, the reasons for this do not concern us here. (For a critique of Millikan’s and
others’ aetiological theories of function, see Christensen and Bickhard (2002]).) What is important is that
it employs and alternates between two different methods of description: cognitive and historical. The
notion of proper function introduces an evolutionary context independent of an agent’s actual operation
as it is realised, and ‘adapting to a state of affairs,” ‘signal-producing,” and ‘signal-consuming’ are all
cognitive terms (they go beyond describing a spatio-temporal pattern of movement). However, when it
comes to designing a task for model agents, the authors seem to use the same constraints as described
above. Thus, there appears to be an implicit change of description in which cognitively loaded and
historical descriptions are exchanged for a more concrete spatio-temporal description.

What is relevant here about these definitions is that they describe (or imply) the conditions of obser-
vation of those phenomena we consider to be instances of referential communication. They characterize
— whether implicitly or explicitly — the spatial trajectories of the agents involved and what constraints
they must satisfy in a given context in order that we call those trajectories instances of referential com-
munication. Thus far, there is nothing inherently wrong with this method of description. We must begin
somewhere in trying to model a given phenomenon, and the conditions of observation are all we have
prior to an actual investigation. Hence, such conditions can serve as constraints on a task that model
agents can solve.

Furthermore, it is certainly useful to describe the behaviour of particular agents in spatio-temporal
terms, to the extent that this is a simple reformulation of what is expressed by a visual representation
of the agent’s spatial trajectory (in fact, we do this for the model presented below). However, matters
become problematic when satisfaction of the conditions of observation (e.g., an agent solves the task)
is taken to imply the cognitive capacity we associate with those conditions. The problem is that the
conditions do not uniquely specify a cognitive capacity, as they say little about the actual operation of the
agent or how the observed behaviour is situated within the agent’s cognitive domain. We are suggesting
here a differentiation between behavioural or spatio-temporal description and cognitive description.

This problem is exacerbated when we use natural language verbs in describing the behaviour of a
model agent (communicating, recognizing, searching, etc.). It may be contended that such descriptions
are metaphorical or made tentatively in recognition of the imprecision of natural language. But what
does the more precise description look like? There seems to be no clear way to move from a natural
language description to a formal description beyond basic representations of physical space. This is not
to say we need formal definitions of the concepts implicit in language, but rather a method of description
that is amenable to formalisation and flexible with respect to the structure of an agent’s cognitive domain,
as opposed to one restricted to a human’s cognitive domain. Here, we will be primarily targeting this
verb-based method of description, as it is the only substantive cognitive description commonly used.



When it is not applied directly to the agent, it serves as an implicit connection between spatio-temporal
descriptions of the agent and the stated purpose for investigating it (e.g., to study communication).

What is needed, then, is a method of description that takes the agent’s perspective as central. Such a
description has appeared in the adaptive behaviour literature before (Izquierdo et al., 2008} Phattanasri
et al.,|2007)), but not as a more general approach beyond the particular formalism adopted, and without
an explicit connection to the concepts of a cognitive domain or an Umwelt. Thus, we propose to make
explicit the concept of cognitive distinctions as a useful tool for formulating descriptions of broader
classes of systems. We define a cognitive distinction as the sufficient differentiation of state trajectories
following varied perturbations. This definition is clearest when we treat the system’s states and behaviour
as discrete (at least in approximation). For example, imagine an experiment in which a visual stimulus
is presented that only varies in color. The subject must identify the color by name. Clearly, we can
expect that minor variations in shade would be named together, while red and blue, for example, would
be named differently. We can then get a sense of the structure of the cognitive domain by mapping
these names onto a color space. Suppose we also track the internal state of the subject (brain activity,
metabolism, etc.) before each presentation of a color stimulus: we can then connect these states by the
stimulus that induced the transition. This can be done in terms of the complete color space (continuous)
or in the labelled one (discrete). When carried out exhaustively on all internal states, this process
generates the network of all possible color-naming interactions.

In this (unrealistic) example, the ‘varied perturbations’ are the different colors and the condition
of ‘sufficient differentiation’ is the subject giving different names. We attribute a particular cognitive
distinction to one of the subject’s states when different color presentations on that state result in different
names.

While we will reserve a fuller defence of cognitive distinctions for when we have a more concrete
example, a few points are in order here. Firstly, a complete mapping of the cognitive domain would
demand the presentation of all possible perturbations on all possible internal states. Obviously, this is
an impossible task for any real system. But we need only a subclass of perturbations with some degree
of structure to achieve something useful, as demonstrated in the color example. Moreover, as we intend
to apply this method to simple model agents, there are far fewer degrees of freedom to worry about.
Secondly, we attribute cognitive distinctions to states and not the whole agent; it is a local attribution,
not a global one. Thirdly, the imaginary experiment described above may appear to contradict our
dynamical perspective in mapping ‘inputs’ to ‘outputs’, but this is more an artefact of discretisation and
pedagogical decisions. The temporal separation of apparent inputs and outputs breaks down in more
complicated continuous interactions. Further, even in the discrete case, when we do not have complete
control of the full space of perturbations, the actual perturbations any system experiences are in part
determined by the system itself (we move our head to get a different view).

We should be careful not to confuse the notion of distinction we are proposing here with a notion
derived from the conditions of observation. In the former, the agent’s perspective in every interaction is
important; in the latter, only outcomes. A thought experiment may help to clarify this: imagine that
in a room, there is a desk with red and green pens on it. We cannot enter the room, nor can we look
inside, but we can ask a friend to go get us a pen of our choosing. So we ask them to get a red one, and
moments after closing the door behind them, they return with the correct pen. We can also imagine the
exact same situation, down to the molecular level, except that we ask for a green pen and our friend
returns, again, with the correct pen.

This is a very mundane thought experiment, but it makes clear the difference between a distinction
with respect to the conditions of observation and a distinction with respect to the cognitive domain of
an individual. Here, the conditions of observation for ‘successfully retrieving the correctly colored pen’
is us asking for an X-colored pen and our friend returning with such a pen; thus we say that our friend
satisfied the conditions of observation. We might take such satisfaction to imply that our friend can
‘distinguish between red and green,” but this is ambiguous — it does not specify how they made such a
distinction. Say, for example, that our friend is color-blind. How might they have successfully chosen the
correct pen? If the pens were labelled by color, it would not be difficult. They may also have happened
to have a spectrophotometer on hand.

The point is that, with respect to the cognitive domain, each of these situations is very different:
seeing two different colors is not the same as reading two different words, or two different numbers.
With respect to the conditions of observation we specified, these are all equivalent. This does not stop
one, however, from specifying further stipulations on what satisfies the conditions of observation, but
narrowing the range of possible behaviours is not a substitute for describing how that behaviour relates
to the cognitive domain of the acting individual. In the model we present below, this difference between



senses of distinction becomes relevant.

3 The Model

This model is largely based on those of Williams et al. (2008) and Yao et al. (2023). There are two agents,
called sender and receiver. They exist in a one-dimensional periodic environment of circumference 2,
along which they can move in either direction. Each agent is equipped with a single continuous sensor
sensitive to any object in the environment, with a range of £g; centred about the agent; the sensor is
unsigned, so they cannot directly determine the direction of a stimulus.

All possible objects in the environment — of which there are two kinds — are points on the circle.
The other objects besides agents are ‘posts’. Posts are organized into sets such that, within a set, each
post is placed in sequence 55 apart. We will notate post-sets by P = n, for n posts in the set.

The Agents

Each agent is controlled by a five-neuron continuous-time recurrent neural network (CTRNN) governed
by the following state equation (Williams et al., |2008):
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where y; is the state of each of IV neurons, 7; is a time-constant, w;; is a connection weight from the jth
neuron to the ", ; is a bias term, o(x) = 1/(1 4+ e~®) is the standard logistic activation function, and
g; is a connection weight from the sensor s to the i*" neuron. The output of a neuron is o; = o(y; +6;).
The network is fully interconnected, including self-connections, and the sensor has a single weighted
connection to every neuron (Figure|l]). Both sender and receiver share the same parameters. The sensor
activation is defined by the following equation:

1

s(d) = 11 ep@d—1) (2)

where d is the absolute distance from the agent to the nearest object (another agent or otherwise),
normalised to the sensor range. If the distance is greater than that range, s is set to 0.

Figure 1: The agent configuration of a sender. All agents have a sensor (red) connected to all N neurons
(black). The neurons are fully interconnected, including self-connections (not depicted). In the sender,
Nj drives the + motor, and Ny drives the — motor. In the receiver (not depicted), this configuration is
reversed.

Two neurons are designated to drive the + and — motors. We will call the neuron that drives the +
motor the + motor-neuron, and analogously for the — motor. In the receiver, the circuit is mirrored such
that the neurons driving the motors are swapped compared to the sender (i.e., N7 drives the + motor
in the sender, but the — motor in the receiver). This constitutes the only difference in configuration
between the agents; they therefore move in opposite directions for the same pattern of motor-neuron
activation. The velocity per time-step of an agent is given by: v = (01 — 03), where 01 and o0y represent
the outputs of the motor neurons, and -y is a constant corresponding to the maximum velocity. For this
study, the maximum velocity was set to v = 3. Simulations were run with Euler step integration and a
step size of 0.01.



The Task

The task is organised in three phases: ‘Phase 1’, ‘Phase 2’, and ‘Phase 3’ (Figure . The phases last for
250, 300, and 600 time-steps, respectively.

o

Figure 2: A task configuration. The task environment is one-dimensional and periodic (a circle). In
Phase 1 (left) the sender (blue) interacts with the P = 1 target post-set (yellow). In Phase 2 (center)
the receiver (pink) interacts with the sender. In Phase 3 (right) the receiver moves until it reaches the
target post-set, ignoring the P = 2 distraction (green).

The agents are always initialised with the state of all their neurons set to 0; they are only initialised in
the phase in which they first appear in a given permutation (a single instance of the task), meaning they
maintain their state trajectory between phases. In Phase 1, the sender begins at position 0+ 55 and the
target at 7 (agent positions are always initialised on a uniform Gaussian distribution, while the positions
of post-sets remain constant). After interacting with (passing through) the target, the sender must then
continue into the next phase, primed for different patterns of behaviour depending on whether the target
was P =1 or P = 2. Phase 2 begins with the target removed, the sender continuing its trajectory, and
the receiver initialised m & 55 units from wherever the sender is; the environment is now empty apart
from the agents. The interaction between sender and receiver must be such that the receiver’s state
and/or position varies with respect to the target by the end of the phase. The beginning of Phase 3
removes the sender and sets the receiver’s position to 0 4= 55. There are two post-sets equidistant from
this location, at i%"; one is designated the target and the other a distraction. The sender and receiver
are evaluated based on how close the receiver is to the target post in Phase 3.

This is repeated over four permutations; we notate permutation n by Pu = n. Pu € {1,2} have
P =1 as the target (the “target condition” is P = 1); they are thus identical for the first two phases.
They differ in Phase 3 with respect to the arrangement of the post-sets: Pu = 1 has the target a —%”
and the distraction at %”, while Pu = 2 has the opposite configuration. Pu € {3,4} are similarly related,
except with P = 2 as the target. The permutations are always in the same order.

The agents are evaluated as a pair over five trials, where a trial is one cycle of the four permutations.
Fitness is calculated according to the following equation:

: 1 d—de .
f = min { Puy] %u: (1 - %_dc), trial € T} (3)
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where {Pu} is the set of permutations, d is the average distance of the receiver from the target during
the last 250 time-steps of Phase 3, d. is the maximum distance from the target necessary for perfect
performance (the “close enough” range; here d. = 2%), and T is the total number of trials (here, 5). The
fitness is thus calculated as the worst trial.

A given permutation is terminated and evaluated to 0 if any of the following conditions are met: (1)
the sender is within d. of the target at the end of Phase 1; (2) the agents are within d. of each other
at the end of Phase 2; or (3) the receiver interacts with the distraction after contact with the target.
The first two constraints ensure continuous activation values (no sudden jumps between phases) while
the third is meant to ensure that the receiver can only depend on previous interaction with the sender
to successfully reach the target.

Evolution

Parameters for the CTRNN were evolved using a real-valued genetic algorithm (Beer, 1996]). The fol-
lowing parameter ranges were used: time-constants 7 € [1,30], connection weights between neurons



w € [—16, 16], biases 6 € [—16, 16], and connection weights from the sensor to each neuron g € [—16, 16].
A generational algorithm with rank-based selection was used on populations of 53q3| genotypes, each
evolved for 10,000 generations. Genotypes are 40-dimensional vectors of real numbers in the range
[—1, 1], where each number encodes the value of a single parameter by mapping it to the ranges specific
above. The evolution begins with a population of random genotypes evaluated on the task. Successive
generations are created by first sorting by fitness and selecting the top 5% of genotypes (the ‘elitist frac-
tion’). These genotypes are left untouched. The remaining genotypes are mutated by adding a random
displacement vector whose direction is sampled from a uniform distribution of unit vectors and whose
magnitude is sampled from a Gaussian distribution with mean 0 and variance 0.2. The whole population
(including elites) is then evaluated on the task. Evolutions were run until a genotype achieved a fitness
of 0.95. 176 populations were evolved, producing 16 successful solutions.

4 Comparing Descriptions

This section analyses a particular agent pair in order to compare natural language description and
description by cognitive distinctions. First, we provide an overview of the agents’ spatial trajectories and
begin analysing the neural mechanisms that support those trajectories. We then use Dynamical Systems
Theory (DST) to provide a more comprehensive analysis, before applying both methods of description to
the system; in particular, we present a provisional graph-theoretic formalism for cognitive distinctions to
articulate the description. Finally, we evaluate how the descriptions relate to each other and the agents’
operation.

4.1 Behaviour and Neural Mechanisms of a Simple Agent

Figure [3|shows the behavioural trajectories of a sender-receiver pair. When the target condition is P = 1,
the sender passes through the target seemingly unaffected during Phase 1. In Phase 2, sender and receiver
move in trajectories of near constant velocity, crossing each other three times. In Phase 3 for Pu = 1,
the receiver crosses the P = 2 distraction three times before slowing to approach the target without fully
crossing it. For Pu = 2, the receiver simply passes through the target and changes its velocity to be
slower and in the opposite direction. When the target condition is P = 2, the sender similarly passes
through the target in Phase 1, except this time it begins slowing down before reaching the end of the
phase. Then, in Phase 2, the sender has a very low velocity while the receiver passes by it at its initial
speed. In Phase 3 for Pu = 3, the receiver passes through the P = 1 distraction before slowing down
and changing direction just before reaching the target. For Pu = 4, the receiver very quickly turns and
slows after passing through the target.

What should we make of this behaviour, and how should we describe it in a cognitive manner? At this
point, we do not yet want to construct our description by cognitive distinctions prior to an explanation
of the agents’ operation. Part of this is rhetorical, in that our proposal is more convincing after we have
permitted a full elaboration of the ordinary method of description. For instance, we might say that the
sender “identifies” the target, “communicates” the target to the receiver, and that the receiver “finds”
the target in its environment — clearly, these verbs (scare-quotes or not) do more to fuel our intuitions
than inform us of anything useful. To use this caricature would be a dishonest representation of what
actual descriptions in the literature look like. However, this is not to say that the language fundamentally
changes (if it is present at all), but that mechanisms are sought that roughly correspond to the verbs
used. This constitutes the justification of the language.

Another part is that we do not yet have sufficient information to construct a description by cognitive
distinctions. Namely, we need to first have an account of the transitions between the agents’ internal
states that are induced by perturbations before we can reconstruct a network of such transitions. And
again, the appropriateness of the description is best evaluated in light of a more thorough understanding
of how the agents actually work.

We divide our analysis into subtasks corresponding to each phase and compare permutations within
the phase. As we have already described and shown in Figure 3| there are two behavioural trajectories
observed in Phase 2. The neural traces of the motor-neurons during these trajectories are shown in the
first column of Figure We can see in these plots a sort of stepping mechanism, in which repeated
contact causes o1 (cyan) to move in discrete-like steps between relatively stable or slow-moving states.

IThe strange population size is due to concerns over compatibility with multithreading given the elitist fraction: 0.95 x
539 = 512.
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Figure 3: Position trajectories in 4 permutations. The numbered axis is time. The sender is blue, the
receiver is pink, targets are yellow, distractions are green, and contact points are red. The plots in the
top row are for Pu € {1, 2}, target condition P = 1. The plots in the bottom row are for Pu € {3,4},
target condition P = 2. The blue arrow in Pu = 1 indicates the position at which the receiver returns
to its go-attractor. Positions are initialised with no noise.

As these steps accumulate, the neuron eventually reaches a point where it swings, at different rates, into
a more active state where its output is near 1.0 (second and third columns). The dotted line in Figure
indicates this threshold point. Thus, the receiver enters Phase 3 with different levels of sensitivity to
perturbation-induced transitions, corresponding to discrete-like steps; we label these steps low, mid, and
high, where high is nearest the threshold.

Phase 2 Phase 3 (Pue {1, 3}) Phase 3 (Pu€ {2,4})

1.0 A

0.8 1
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0 50 100 150 200 250 300 0 100 200 300 400 500 600 0 100 200 300 400 500 600
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Figure 4: Neural traces of receiver in phases 2 and 3. The traces in the top row have target condition
P =1, and the ones on the bottom have P = 2. Neuron o0; is cyan and neuron oy is purple. Vertical
red lines represent contact points (when the sensor value is > 0.5). The dotted grey line is the threshold
(saddle) point; the dotted blue line is the attractor (mid).

The rate of these transitions is also important in light of the different slowing speeds we see in Phase
3. We can sort the patterns of this phase into three categories: reset in Pu = 1, such that neuron oq
returns to low (this point is indicated by the blue arrow in Figure ; fast-stop in Pu € {2,4}; and
slow-stop in Pu € {1,3}. Notice also how not only the step-mechanism, but also the particular post-set
determine whether the o, passes the threshold. That is, if we interpret the difference between P = 1
and P = 2 as a difference of magnitude (in the sense that the sensor is active for longer passing through
P =2 than P = 1), magnitude correlates with larger steps in o0;.



We now have two matters left to explain: (i) why does a P = 2 perturbation on high induce the reset
behaviour, and (ii) how do all these patterns and mechanisms relate to one another? To answer these
questions, we need a more global picture of the agent’s operation achieved by a dynamical analysis. (For
an introduction to DST, see Garfinkel et al. (2017) or Strogatz (2018); for its application to brain-body-
environment systems, see Beer (1995).)

4.2 Dynamical Analysis

We selected this agent because it can be reduced to a two-dimensional dynamical system (Figure [5));
the procedure is as follows. First, we found that two of the interneurons could be lesioned without a
noticeable effect on performance. Then we fixed the remaining interneuron to maintain an output value
of 1. Thus, the whole system can reasonably be analysed in the space of the two motor-neurons. The only
qualitative change in the reduction is a saddle point becoming an unstable fixed-point for certain values
of s (red line in Figure @, but this can be explained by noticing that there are two positive eigenvalues
at these points in the full state-space (and thus two unstable directions). When the system is reduced,
these are the only eigenvalues remaining, the other stable directions disappearing. The parameters of
this reduced system are provided in Table [I]
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Figure 5: Phase portrait of a two-dimensional CTRNN in the output space of the motor-neurons, with
s = 0. There are two attractors (blue points) and a saddle (green point). The basins of attraction are
delineated by the stable saddle manifold (blue line) and the attractors are connected by the saddle’s
unstable manifold (red line). The dotted grey lines indicate the bounds of the output space, [0, 1]2. The
agents start in the basin of the left attractor.

N; Parameter ‘ Value H N, Parameter Value
w11 9.382272 W1 —6.768112
wWa1 9.417232 Wao 9.298944
Wy 1.742544 W42 —13.632000
0, —14.319552 0 15.190256
g1 15.984208 g2 —4.954400
Ty 29.980831 Ty 16.657316

Table 1: Parameter values for the reduced two-dimensional CTRNN. Values are roupded to six decimal-
places. The first two columns give the parameter values for the equations defining N, and the right two
columns do the same for Ns.
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Figure 6: Bifurcation diagram of a two-dimensional CTRNN in output space. s is treated as a parameter
of the system, where each value has a corresponding phase portrait (in the (o1, 02) plane). Blue lines
that extend across s represent branches of stable equilibria, red lines unstable equilibria, and green
lines saddle points. (a) Closed blue curves are limit-cycles at particular values of s, but represent the
continuous transformation of a limit-cycle over that range. Black points labelled ‘F’ are fold, or saddle-
node, bifurcation points. A fold bifurcation occurs at s = 0.003, destroying a stable attractor and saddle;
another occurs at s ~ 0.060 creating a saddle and unstable fixed-point; the limit-cycle is created and
destroyed by infinite-period bifurcations at s ~ 0.198 and s ~ 0.394; a final saddle-node bifurcation
destroys an unstable fixed-point and a saddle at s ~ 0.510. (b) Zoomed in view of first bifurcation at
5~ 0.003.

We now note some important properties of the dynamics. The phase-space under no sensory stim-
ulation contains two attractors, separated by a stable saddle manifold (Figure [5)). These attractors
correspond to two basic behaviours: the attractor on the left corresponds to fast movement, and the
other to slow movement in the opposite direction. Thus, we will refer to them as the go- (fast movement)
and stop- (slow movement) attractors. To understand what happens as the system undergoes sensory
perturbation, we can look at the bifurcation diagram (Figure @ When a small sensory perturbation is
applied to the system, the saddle and go-attractor are very quickly annihilated by each other (Figure @b),
this allows the system to move into the basin of the stop-attractor (the stop-basin). The state of the
system can return to the go-basin, as well, if a perturbation allows the limit-cycle (closed blue curves in
Figure @a) to persist long enough, i.e., if the perturbation is slow enough around the appropriate values
of s. In fact, if we notice the geometry of the go-basin in Figure [5) we see that the state of the system
need only reach the lower part of the limit-cycle (Figure |§[) in order to be in that basin when s = 0.
The remaining feature critical to the agent’s operation is the timescale between the go-attractor and the
saddle point (Figure [7h). Here, because the timescale is so slow relative to the task, the system may act
as if near a fixed-point despite being in a transient.

We can now recast our previous analysis in dynamical terms. First, we plot the steps of the receiver
in state-space (cyan points in Figure ) We see that these points lay along either the initial transient
(grey) or the unstable saddle manifold (red). Hence, the apparent stability of the steps is due to those
points being in a region with a very slow timescale. Moreover, the sequence of steps approaches the basin
boundary, and it is in fact this boundary that constitutes the threshold point in Figure [ We also note
that the speed of the transition to the stop-attractor is dependent on how far a trajectory is pushed into
the stop-basin, since trajectories further into the basin move faster (Figure [7h).

Finally, Figure [f]allows us to see how the reset behaviour works: when the state is sufficiently close to
the basin boundary (high) and the perturbation is sufficiently large (P = 2), the system spends enough
time in the monostable and limit-cycle regimes (s 2 0.198) to be pulled into the lower part of the state-
space before the phase-portrait returns to its s = 0 form. This explains why the receiver crosses P = 2
three times in Pu = 1. After the receiver passes through once, it is well into the stop-basin, where the
agent reverses direction. This causes it to run into the posts again, thus accelerating its motion with the
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Figure 7: Phase portraits of the agent in state-space with s = 0. (a) Vector field near the saddle point
(green). Vectors are colored according to the magnitude of the N; component, where a darker teal
indicates a larger magnitude. The timescale of the dynamics near the unstable saddle manifold (red)
is much lower left of the stable manifold (blue) than in the region Ny 2 12.75. (b) States just before
contact. All points lie on either the unstable manifold (red) or the initial transient from the starting
state (grey). The saddle’s stable manifold is in blue. Cyan points correspond to the receiver’s state just
before contact with the sender (high being nearest the saddle). The purple point corresponds to the
sender in Phase 1 just before interaction with a post-set. The pink point corresponds to the receiver in

the P = 2 target condition just before interaction with a post-set.

— motor-neuron near 1.0 and the + motor-neuron near 0.0 for s 2 0.394 (Figure @; this is sufficient to
bring the agent into the lower part of its state-space by the time it passes through the post-set, where
it then moves through the go-basin until it approaches the attractor and changes direction again (blue
arrow in Figure |3). Then, after it passes through P = 2 once again, the state is brought just past the
stable saddle manifold where its initial speed is slow, thus generating the slow-stop behaviour.

4.3 Cognitive Descriptions

We now come to finally apply the methods of description that motivated this investigation. An ordinary
(verb-based) description might look like this: “the sender communicated the target (P = 1 or P = 2)
to the receiver, and the receiver identified the first post-set it ran into as target or distraction and
then adjusted its behaviour sensitive to information stored during communication.” Compare this with
a sentence from Campos and Froese (2017), “We know that the agents have to decide what role they
should take before starting commaunication.” (p. 6; emphasis added). Similarly, Yao et al. (2023) writes,
“The receiver needs to recognize environmental labels and develop ways of reacting to them that are also
sensitive to the information stored in communication” (p. 461; emphasis added). These descriptions
make reference to the cognitive capacities of the agents as global properties using natural language verbs.
Thus, we hope, our verb-based description is a plausible representation of what occurs in the literature.

To substantiate our description, we point out the verb-mechanism correspondences. The sender’s
communication was simply a matter of changing velocity by transitioning between the go- and stop-
basins. The receiver’s information storage corresponds to the step-mechanism, leaving it in different
states by the end of Phase 2. Identification of post-sets corresponds to the control of different stopping
(or reset) behaviours, based on the magnitude of the perturbation relative to its state.

To construct a description by cognitive distinctions, we first split the behavioural trajectories of each
agent at every perturbation. This results in five behavioural patterns: low, mid, high, slow-stop, and fast-
stop. We differentiate the steps as distinct patterns, since we know that the same set of perturbations
can elicit a different response-profile in each. Similarly, we will classify perturbations as ‘fast agent’,
‘slow agent’, P = 1, and P = 2, where ‘fast agent’ is an agent near its go-attractor, ‘slow agent’ is an
agent near its stop-attractor, and P = 1 and P = 2 are as before. With these labels, we can construct
a graph where behavioural patterns are vertices and perturbations are edges (Figure ) We call this
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a (partial) interaction graph. This partition of the behaviour and perturbations constitutes the basis
for the concept of cognitive distinctions to apply; it implies a specification of sufficient differentiation
as that which varies with respect to task outcomes. Thus, we are defining distinctions relative to the
behaviour observed in the task. Note also that, since the sender and receiver have identical parameters,
we can combine information from both agents to generate the graph.

low slow

@ - low slow

mid

fast

Figure 8: Partial interaction graphs of a single agent. Cyan vertices represent the stable ‘steps’ in Fig-
ure . Red vertices represent the slow-stop and fast-stop state-trajectories of the agent. (a) Partial
interaction graph without explicit perturbation classes. Edges represent state-transitions after perturba-
tion, where blue is interaction with P = 1, red with P = 2, black with ‘slow agent’, and grey with ‘fast
agent’. Redundant edges indicate a failure to distinguish those perturbations. (b) Partial interaction
graph with explicit perturbation classes. Since no states have the same response-profile, every class is
given a unique color.

More generally, we construct a graph from a set of time series by first creating a finest partition
of the perturbation space such that the final graph exhibits a reversible dynamics (one edge per color
per node). Then, separate states and state-patterns by the perturbations observed (assuming we can
treat perturbations in such a discrete manner; we return to this point in Section . This permits the
construction of paths representing the behaviour of each agent in each time series. The final graph is
formed by combining these paths.

There are a few things to notice in the interaction graph. Not every vertex has four outgoing edges,
since this graph was only constructed from the behaviour observed in Figure 3| (hence we call it a partial
interaction graph). Also notice that any particular behavioural trajectory is simply a path through the
graph.

More importantly, however, is the rich picture of the agents’ perspective we get from this descrip-
tion. For instance, notice that when low is perturbed by ‘fast agent’ (grey), ‘slow agent’ (black), or
P =1 (blue), it always transitions to mid; the agent cannot distinguish between the perturbations in
this state. Moreover, what perturbations the agent can differentiate changes based on its state. This
suggests that the perspective of the agent — the world that it experiences — is far more dynamic than
a natural language description would imply. In particular, consider the high vertex; here, the agent fails
to distinguish the post-sets, despite this state being critical to the receiver’s success in Phase 3 — where
we might expect “identifying the post-set as target or distraction” to happen. This relates to our earlier
discussion of the different senses of “distinction.” If we focus our attention on Phase 3, we can say that
the conditions of observation for successful completion of the task is to distinguish between P = 1 and
P = 2. But in Pu € {1, 2}, the receiver begins in the high state where we have just said that it cannot
make such a distinction. The contradiction is resolved by noticing that cognitive distinctions are relevant
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in every interaction during the Phase, whereas distinction with respect to the conditions of observation
only needs the receiver’s final position to be satisfied. We can explain this more intuitively by saying
that the receiver uses an embodied solution to the task by utilising agent-environment dynamics that
do not depend on the explicit distinction of the post-sets from the high state; that is, the agent can
use paths through the cognitive domain where a single interaction may not be sufficient. Thus, the
agent-environment system is capable of making the distinction, even if it is only indirectly present in the
agent’s cognitive domain.

We can further elaborate the graph to more directly represent the experience of the agent by con-
structing perturbation classes as partitions of the set of perturbations already defined (Figure ) Here,
each vertex has its own partition, where each class is an indistinguishable set of perturbations. The
figure gives each perturbation class a unique color. Two vertices can use the same set of colors if their
partitions are identical (this does not occur in our graph). Unfortunately, while this representation better
reflects the experience of the agent, it is more opaque to the observer-communityﬂ Part of this is due
to the graph being only partial, but it is also a consequence of our being concerned with the task, and
not the full scope of interactions the agent can engage in (we also return to this point in Section .
Another reason Figure is less useful here is that we are abstracting over how the agent is spatially
embedded. In our model, the only variations in spatial embedding are location and default direction of
movement. Including location would be impractical and less useful in this case, since we would have to
separate vertices based on where the agent is when in the corresponding internal state; given the limited
number of interactions available in the task, this would give us very little information about what the
agent can actually distinguish in each internal state (it can be useful, however, if we want to understand
how agent and environment mutually constrain each other in structural coupling, c.f. Beer, |2020al). We
also abstract over default direction of movement since no interaction can change this (an agent cannot
convert itself between sender and receiver); if we did not, we would simply add a disjoint copy to each
graph in Figure [8] with relabelled vertices (again, this can be useful when an agent can change these
spatial embeddings through interaction, c.f. Beer, |2014)). When these more interesting situations do
arise, however, something like Figure would become more useful as the same internal state would
share perturbation classes (the same set of outgoing edge colors) over different spatial embeddings, giv-
ing us more information about what sort of interactions an agent can engage in. Thus, it may still be
productive in more general cases to consider both forms, one reflecting the relation between the agent’s
cognitive domain and our description of its environment, the other reflecting the perspective of the agent
independently of that description, i.e., its Umwelt (von Uexkiill, [1957/1992]).

A few points bear mentioning here. The first of these is that describing agents in this way requires
an account of both its behaviour and its environment, as well as the dynamics between them. And
more than this, the environment must be explicitly considered from multiple perspectives, reinforcing
the observer-community’s role. The world of the agent is not pre-given, but must be constructed if we
are to fully understand that agent in cognitive terms. Secondly, the graph, on its own, cannot predict the
behaviour of an agent in physical space. This requires the association of particular states, patterns, and
perturbations to the graph’s various components. Put another way, the same graph can simultaneously
describe many distinct sets of behaviours (or, at least, different to us). Again, it is the observer-community
that relates the perspective of the agent to a description of its behaviour and environment. Thirdly,
the method we propose readily permits exploring the emergence of distinctions fundamental to certain
kinds of behaviour. That is, the structure of the cognitive domain may provide insight into how new
behavioural repertoires emerge, including communication and perhaps even language. We might imagine
that an agent-object distinction would result in a subgraph of communicative interactions, such that
interaction with a conspecific would constrain an agent’s behaviour to this subgraph. However, this is
quite speculative and only meant as a demonstration of the method’s potential application.

Let us broaden our scope once again to evaluate and compare the methods of description we have
been concerned with. We first consider how they relate to explanations of the behaviour described. When
we use a natural language description, the operation of the agent is very unconstrained. This in itself
is not a problem, as we can interpret such a description as specifying the conditions of observation such
that the ambiguity with respect to operation is, in fact, a virtue. That is, we want to assume as little
as possible about the operation when we specify conditions of observation. But problems arise when
natural language is interpreted beyond this role as a cognitive description of the agent. As we have seen,
the expectations implicit in natural language can obscure features of an agent that may challenge our

2] use ‘observer-community’ instead of ‘observer’ to emphasise the inherently social and linguistic context in which we
make descriptions and explain phenomena. Varela (1979)) puts it succinctly: “..the knower is not the biological individual.”
(p. 276).
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intuitions about what it is we attribute to that agent; we might attribute ‘recognition’ or ‘identification’
without considering whether the agent has the capacity to differentiate what is supposedly recognized or
identified, or whether such differentiations are needed globally in the agent’s state-space to qualify for
such attributes. This is clear in the example above, where the receiver cannot distinguish between P =1
and P = 2 in one of its states. Another example is both agents failing to distinguish P = 1 from each
other (see the low vertex in Figure ) It then becomes unclear whether it is even appropriate to talk
about ‘communication’ or ’recognition” when such distinctions are not present, so long as we take those
distinctions to be important (we elaborate on this point in Section. This is not to say that the presence
of certain distinctions proves or disproves whether the agent “really” communicates or not, but it forces
us to consider more carefully what about the agent’s perspective is important to the phenomenon we
wish to understand — we must ask ourselves whether our intuitive concepts are still useful.

The correspondence between cognitive distinctions and operation is, in contrast to the ordinary
method, much closer. It is not that distinctions are themselves descriptions of the operation of an agent,
but that they better specify what conditions such operation much satisfy. For instance, we might expect
a separation of state trajectories following different perturbations, but without specifying what sort of
dynamics facilitate such separation. Moreover, since cognitive distinctions are explicitly state-dependent,
we do not assume global uniformity of an agent’s operation. This is what allows distinctions to better
capture the global structure.

To return to a point made in the Introduction, we emphasize that the method of description we
propose is not “better” in some absolute or positivist sense, but that it is more appropriate to certain tasks
than ordinary language, and wvice versa. We can situate these methods in a broader framework that makes
clear the pragmatic role they play. We have, throughout this article, used dynamical descriptions, neural
descriptions, spatio-temporal/behavioural descriptions, and cognitive descriptions. They all mutually
constrain one another, and each facilitate different needs. We used dynamical descriptions to explain
the particular neural patterns we observed, and how those patterns relate in a global structure; we
used spatio-temporal descriptions to specify the conditions of observation for our notion referential
communication, as well as to set a target of explanation for a particular agent; and we used cognitive
descriptions to explore the perspective of the agent, to consider the attribution of cognitive capacities,
and as a potential preliminary to specifying the appropriate conditions of observations. We can further
consider the language in which we make these comparisons as cognitive descriptions of our own activity
as linguistic organisms with scientific concerns. When we confuse these methods and aims, we risk
epistemological error by forgetting what we — the observer-community — are doing.

5 Discussion

This article sought to demonstrate problems in using natural language to generate cognitive descriptions
of model agents. We outlined what we consider to be the ordinary method of description and suggested
that it is unsatisfactory in formulating cognitive descriptions because it risks conflating conditions of
observation with cognition as it is realised in an actual agent. We tried to make explicit the concept
of cognitive distinctions as the basic object for a method of description that remedies this issue, and
developed and analysed a model of referential communication, describing it using both the ordinary
method and cognitive distinctions. Finally, we extrapolated the immediate consequences of using either
method and compared them to establish that the ordinary method of cognitive description fails to
adequately capture the perspective of an agent, where cognitive distinctions can.

To clarify the point of all this: we want to contribute to existing methodologies for doing cognitive
science, and especially for analysing simple models of cognitive behaviour, by providing a more rigorous
and useful method of cognitive description. This requires an evaluation of the language we use to describe
cognitive systems and, more generally, a linguistic and epistemic self-awareness that engenders a mode of
inquiry in which acknowledgement of the observer-community is a necessary precondition to sensibly talk
about the cognition of any system. The development of formalisms that require such awareness for their
interpretation is one part of establishing the more epistemologically sound methodology we seek. That
is, not only do formalisms, in general, provide a rigorous framework in which to articulate theoretical
concepts, but they also serve as guides for how we ought to approach a given system.

5.1 The Genesis of the Problem

That we have identified a problem in how we normally describe cognitive systems leads us to ask how
the problem arises in the first place. We will not provide a causal explanation, nor an adequate historical
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account, but a series of more or less implicit factors that may play a role in how we think of systems
and their description. First, there is the main confusion that we pointed out in the Introduction: the
confusion of cognitive description and specification of the conditions of observation. We have already
dealt with this point in the previous section, so we will not address it further.

Second, there is the assumption of a static, human environment. We often think of other organisms as
living in the same world we do, perhaps with more or less detail. This leads us to project our perspective
onto other systems when they appear to successfully navigate a situation. But, as we have seen, the
world in which the system lives, from its own perspective, can radically undermine these assumptions.
And even more interestingly, that perspective can vary greatly dependent on the agent’s state; we do not
generally expect that changes of state in ourselves will radically alter our perception in such a manner.
What is needed, then, is a more explicit appreciation of how an agent brings forth its world (Varela et al.,
2017)).

Third, there is too often a failure to appreciate the pragmatic roles descriptions can play. For example,
the assumption of appropriate verb-mechanism correspondences reflects a tendency to view scientific
propositions as somehow representing what the world objectively is (from a realist’s perspective). But
our demonstration of the shortcomings of this method does not reflect a failure to capture some ground
truth, but a misapplication of a method to a context where it is less useful. The inadequacy of the natural
language description, in this case, is not a matter of being false, but of sense. When we acknowledge the
perspective of the agent we are describing, there is no matter of fact about whether it ‘communicates’ or
‘recognises’, but only a matter of whether these terms serve our purposes in elucidating the operation and
perspective of the agent. To suppose there is such a correspondence is to assume we have well-defined
notions of our cognitive terms, irrespective of the cognitive domain on which we impose them. But
these terms originate in natural language, and it is the task of the cognitive scientist to determine when
they are useful or not — it is not our job to assume their validity and search for the justification later.
(See Wittgenstein (1953/2009) for a fuller explication and defence of this view of natural language and
description

Again, we wish to emphasise that we are not suggesting an abolition of natural language, but an
appreciation of its role and what its limitations are; it is adequate to direct our attention to phenomena
of interest, to raise preliminary questions, and for participation in a scientific community, but it is not a
mirror of our world, let alone of other ones. Hence, though we have called the model presented above one
of “referential communication” a number of times, we do not wish to say anything about whether the
agents are actually communicative. We called it such because it is based on the conditions of observation
that have to this point been associated with referential communication (we wanted to make clear how
this model relates to the literature).

5.2 Method and Limitations
5.2.1 Technical Limitations

A number of issues regarding formalisation have arisen thus far. In particular, we have described a
continuous system using discrete methods. While a continuous description would be, in principle, more
valid, it is not very clear what the appropriate counterpart to an interaction graph should look like, or
whether such a construction would be useful. That the discretisation appears to work in our case seems
to be a consequence of two factors. The first is that the perturbations observed in the task are clearly
separable and the agents, in most cases, achieved some level of stability between interactions. The second
is that we only cared about the cognition of the agent with respect to the task structure. It is therefore a
very coarse-grained description with very limited applicability beyond the analysis presented here. The
reason we use graphs is that we have tried to extend them from their application to the cognitive domains
of discrete systems (Beer, 2004, 2014) — in which they have proved very useful — into a continuous
realm, while maintaining their utility.

Regardless, we do not see any reason why the particular circumstances of this model should be
considered inherent limitations. In fact, there may already be tools available that could construct more
detailed interaction graphs with fewer assumptions. For instance, the e-machines of computational
mechanics may offer a more algorithmic approach, if suitably modified to generate the construction
appropriate for our needs (Crutchfield, 1994; Nerukh et al., |2002; Shalizi & Crutchfield, [2001)). Given

3There is certainly an interesting connection to be drawn between Maturana and Varela of the biology of cognition and
the later Wittgenstein, especially in the way they come to apparently resonant epistemologies. Needless to say, exploring
that possibility is well beyond the present scope (the interested reader should see Hutto, [2013]).
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the symbolisation of a time series and a few parameters, one can organize the statesﬂ of a system into a
graph with probabilistic transitions between states: this is the e-machine describing the time series. The
adaptation of this to our case would be an exchange of the probabilities for the perturbations that induce
the transitions. Another possibility is to use the mathematics of directed graph limits as a continuous
analogue of digraphs (Boeckner, |2013; Lovasz, 2012).

It would also be interesting to see these methods applied to simple models that exhibit more compli-
cated continuous interaction, such as those of the perceptual crossing paradigm (Izquierdo et al., |2022;
Merritt et al., |2024; Severino et al., |2023)). There, agents are evolved to find and stay near each other
while avoiding stationary blocks and each other’s “shadows” (blocks attached to an agent that cannot
sense it, but that the other agent can). In this case, there is a more direct pressure for agents to be able
to distinguish between conspecifics and other objects in the environment.

More fundamentally, though, the concept of a cognitive distinction in itself need not be discrete if, for
instance, continuous variation in a perturbation results in continuous variation in behaviour. It is just
that this situation cannot be satisfactorily captured by the graph-theoretic formalism we have used here.
One must also consider whether such variation is interesting, i.e., whether it meets the conditions of
sufficient differentiation we define (and here we again see that the observer-community plays an essential
role). Such conditions could be as simple as changing state in a high-resolution discretisation, or as
coarse-grained and task-relative as the ones we have used. In any case, how we interpret the description
we thus derive depends on our interest; higher resolution may result in simply a more redundant form
that, for us, would be equivalent to the task-relative description (a long chain of states with the same
perturbation collapsed into a single edge). Hence, more comprehensive descriptions do not necessarily
provide us more information.

There are a still a number of other limitations to the model we have presented. For one, the dimen-
sionality of our perturbation space is both extremely small and prohibitively large. It is small in the
sense that, in any given instant of time, perturbations can only vary along one dimension. Considered in
our cognitive domain, this is with respect to distance from an agent; considered in the agent’s cognitive
domain, with respect to the sensor value. But if we consider perturbations as having temporal extension,
as we have here, then the space of continuous perturbations becomes infinite.

Let us first consider the space as infinite-dimensional. Even in the case where perturbations cannot
easily be separated to form a finite set of temporally distinct patterns, it is not as though the perturbations
observed in any given task fully explore the infinite-dimensional space. Thus, it may be possible to find
simple dimensions of variation in the perturbation structure that can simplify the analysis. For example,
one might use duration, magnitude, frequency of oscillation, or time-averages of these.

Considered small, the dimensionality of the perturbation space seems to significantly limit the scope
of the cognitive phenomena we can explore, even in principle. For instance, it is unclear how the
appearance of distinct objects of experience could be described in terms of cognitive distinctions. But
perhaps this is more a consequence of our failure to imagine how a method in its infancy could generalise
to the most complicated of cases. Moreover, how we conceptualise our own experience is certainly not
an uncontroversial matter (Dennett, [1992; Marr, 2010; Sheets-Johnstone, [2011} Varela et al., 2017)). In
particular, if we take seriously some of the implications of cognitive distinctions as a phenomenological
method of description, we shift our focus from objects as ‘things for us to see’ to an experience of
variations in our senses that afford certain ways of acting; the apparent fixedness of objects then becomes
a consequence of the regularity of our actions (and thus in the structure of our cognitive domain). This
is, of course, largely speculative at this point, but it should be clear that it would be more profitable
to continue developing the methods presented here before deciding once and for all on their ultimate
fecundity.

Another limitation of the method is one we have emphasised a number of times: cognitive distinctions
serve certain ends better than others. This is most evident when we try to derive conditions of observation
from the interaction graph. This will almost certainly fail. The problem is that the interaction graph
does not specify what a particular class of behaviour should look like in our cognitive domain, and all
the more so if we use an intrinsic representation akin to the one in Figure [8b. How we relate the graph
to a spatio-temporal description of the agent’s behaviour is our decision. For instance, one could equally
well use the interaction graph to describe breaking behaviour after passing over speed bumps. However,
it is not as though such descriptions are completely unconstrained. If we want to create a task in which
certain distinctions are necessary to the solution, then having a number of graphs derived from agents
in different situations may provide insight into how we could facilitate those distinctions. We may find

4Really, the states are themselves time series indexed to indicate a past, present, and future. They are essentially sliding
windows over the given time series.
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that certain graph motifs correlate with certain task structures (e.g., loops in the graph corresponding
to repeated action).

5.2.2 Conceptual Issues

This method of description makes clear the inherent dependence on the observer-community’s interests
— one cannot avoid that the conditions of sufficient differentiation we choose to use are ultimately
arbitrary (though at some point constrained by what is possible for an agent). One might argue that
evolutionary considerations overcome the observer-dependence, but this is incorrect. We can call how
an agent (say, a cell) participates in a higher-order system (a multicellular organism) its function. That
fulfilling this function (relating to other components in the higher order system in a particular way) led a
cell’s ancestors to proliferate does not make it an inherent property of the cell: an evolutionary function
is still a description of the cell’s behaviour bound to a particular context: the higher-order system and
its evolutionary history. Function, then, is shorthand for this relation between component, system, and
history.

One should also remember that a cell’s behavioural capacity need not be restricted to the multicellular
context in which it is observed, and so the function we ascribe to it need not determine what sort of life
a cell can live. Thus, using evolutionary function to determine what is significant for an agent is still the
imposition of our own interests, just now an interest in its evolutionary history. Moreover, a historical
description has no bearing on the operation of an agent as it is realised — a system does not determine
its next state by referring to its evolution — and so the cognitive domain of an agent is determined
by the system itself in its engagement with the world, not by evolution (though the latter may help to
explain the genesis of the conditions that give rise to this cognitive domain). — Any coarse-graining
over an agent’s cognitive domain is still arbitrary and observer-dependent, even if well-motivated.

More broadly, the point of task design need not be to capture some predetermined distinctions. If
the phenomenon of interest is referential communication, the distinctions we associate with it from our
own perspective (i.e., an agent-object distinction) may only be intuitions. That an interaction graph
challenges these intuitions by demonstrating a failure to capture our expectations is not necessarily
indicative of a failure of the task design, but of our intuitions. One can decide that the conditions of
observation supersede the expected distinctions with respect to capturing the phenomenon of interest. An
example from the literature may show this more clearly. Yamauchi and Beer (1994)) successfully evolved
CTRNNSs to solve a sequential learning task. Importantly, they did not incorporate any mechanism to
modulate the parameters of the network, i.e., the agents had no synaptic plasticity. This challenges the
intuitions of many that learning requires such plasticity. Despite such intuitions, the authors concluded
that learning is in fact possible without such an explicit mechanism. This means that they took the
conditions of observation to be more indicative of learning than the expected mechanism (an operational
description). Thus, in both Yamauchi and Beer (1994) and our model, the consequences of the task
design led to descriptions that challenged intuitions about the phenomenon of interest. But whether the
task design was therefore insufficient cannot alone be decided by the presence of such a challenge.

Another possible criticism could be that “one just needs to design a better task, and the whole issue
of failing to capture certain distinctions disappears” (assuming that is their goal). But let us ask in
response: how does one evaluate a task in this respect? If we try to imagine how we would articulate an
agent’s failure to distinguish, without something akin to the method of description we propose, we seem
to be stuck with, for instance, “it looks like it communicates, but in actuality, not quite.” This is clearer
when we cast this issue in the taxonomy of descriptions we have been using. Since designing a task, in
this frame, is just generating a particular realisation of some conditions of observation, there is nothing
in it to directly specify the cognitive capacities of the agents. Thus, any modification to the task made
in light of direct cognitive considerations is necessarily mediated by a change of descriptive method. We
are then again forced to reckon with what methods we employ and how we mediate between them. Or,
put simply, we cannot design a better task without some way to describe agents in cognitive terms, and
so we should ensure that such descriptions, and changes thereof, are without basic epistemological error.

A related criticism is one asserting that “no change of language is necessary, so long as one is careful
in analysis.” While this point is stronger, it still fails for the same basic reasons as the previous one.
For one, it ignores the fundamental role that language plays in guiding an investigation. Put another
way, why would I look for whether particular distinctions are made? When we are left to look for verb-
mechanism correspondences, or else to explain particular spatial trajectories, we have no reason to look
for anything that challenges our intuitions. Further, both of these approaches often fail to sufficiently
take the perspective of the agent into account. And again, if all we have are natural language terms
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and conditions of observation, the best that can be achieved is “this, but not quite.” While neural and
dynamical explanations may serve as the grounds on which we come to question the validity of a natural
language description, they do not immediately suggest how we should articulate that subtly. When
we lack a rigorous method of cognitive description, we sacrifice clarity in understanding the cognitive
significance that our explanations have. This is not to say that previous models (or cognitive science in
general) have said nothing useful about cognition — they certainly have — but rather that they lack a
method in which to articulate this rigorously. In principle, cognitive description could still be done in
natural language without relying on concepts tied to a human cognitive domain, but one would simply
end up with a more cumbersome, opaque, and error-prone description that implicitly depends on the
concept of cognitive distinctions. Having an explicit principled and formal approach helps to avoid these
problems (there are reasons we do not do all of physics in English).

5.3 Conclusion

We end our discussion of cognitive distinctions by looking forward to what their actual implementation
might look like. While we have mentioned their potential significance in broader domains, our particular
concerns are with simple models of cognitive behaviour, as it is these that are most amenable to a formal
treatment, in addition to their theoretical and practical utility (Beer, (1996} (1997, [2020b)). Thus, we envi-
sion a rough template that the construction and analysis of such models might follow. One general aspect
of it would be the explicit mention of the descriptive methods employed, the point of using that method,
and, most important, when changes in method are being made. To facilitate this, one might use a basic
pattern to structure their investigation, in which ordinary language descriptions of cognitive behaviour
are taken as guideposts to natural phenomena from which conditions of observation can be extracted.
Then, after explaining how the system under investigation successfully satisfies those conditions (without
reference to their origin), interaction graphs — or an alternative formalism — can be constructed and
analysed. This would permit an evaluation of the significance of the operational explanations, as well
as further comparisons among a population of cognitive domains to perhaps determine more general
features of the cognitive structure inherent in the task.

We hope that the concept of cognitive distinctions, and the associated methods, can further enhance
the theoretical power of these models to help us understand cognitive phenomena irrespective of our
conceptual and linguistic prejudices — that is, to understand them in their own terms.

Data and Code Availability

All data and code for evolution, simulation, dynamical analysis, and graph generation for the results
presented here can be found at https://gitlab.com/tgaul/referential-communication. Randall Beer’s Dy-
namica package for Wolfram Mathematica was used for the dynamical analysis and generating interaction
graphs.
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