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Abstract

Autopoiesis aims to describe the organization and limits of
living systems. Unfortunately, its theoretical development
has largely been carried out verbally, with less focus on de-
veloping formal concepts of the key ideas, such as structure,
organization, process, etc. Using toy models of emergent in-
dividuals allows us to fully characterize these concepts con-
cretely. This paper generalizes previous work that analysed
autopoiesis in the Game of Life. I use the Larger than Life
family of cellular automata to explore how the concepts of
production process, autopoietic network, and cognitive do-
main extend to this space, before moving to the continuum
limit in RealLife — a continuous-space, discrete-time family
of Euclidean automata.

Introduction
Molecular biology seeks to describe the molecules that com-
pose living systems. Evolutionary theory seeks to describe
the processes involved in the historical transformation of liv-
ing systems. Cognitive science seeks to describe the mech-
anisms that underlay the behaviour of living systems. But
what is a “living system?” — What is missing in these
established fields is an account of the organization of liv-
ing systems and how that organization is actively realized
and maintained. That is, we want to understand how emer-
gent individuals maintain their identity as distinct unities in
space through their underlying constituent processes. With-
out such an account, we are left to assume the existence of
living systems with little understanding of what it actually
means to do so.

Maturana and Varela’s notion of autopoiesis provides a
compelling way to think about the organization of living sys-
tems (Maturana and Varela, 1980). An autopoietic system is
a network of processes of production that produce compo-
nents that both realize that same network (self-production)
and constitute it as a distinct unity in space (self-distinction).
Despite its relatively succinct definition, the idea is quite
powerful in its consequences for understanding cognition,
evolution, and epistemology (Varela, 1979; Maturana and
Varela, 1980, 1987) — however, there is still much ambigu-
ity and controversy in the details (e.g., Di Paolo, 2005; Virgo
et al., 2011).

To further the theoretical development of autopoiesis,
then, it is useful to use toy models of emergent individ-
uals as a way to work out these ideas in a concrete in-
stance. Such models have been around for decades now
(Varela et al., 1974; McMullin, 2004), but they have been
used more as demonstrations than as opportunities for deep
analysis. More recently, however, Beer has used gliders in
the Game of Life (GoL) cellular automaton (Adamatzky,
2010) to thoroughly investigate autopoiesis and its conse-
quences (Beer, 2014, 2015, 2020a,b,c). This paper presents
an initial foray extending this work into continuous space.
Specifically, I use a generalization of Game of Life, called
Larger than Life (Evans, 2001), and its continuum limit, Re-
alLife (Pivato, 2007). This provides a more incremental path
to fully continuous universes, such as Lenia (Chan, 2019),
since RealLife is still discrete in time while being continu-
ous in space.

Thus, this paper proceeds in three stages: first, an intro-
duction to the Larger than Life (LtL) family of cellular au-
tomata; second, how the notions of autopoiesis and cogni-
tion, as articulated in the GoL literature, extend to LtL and
the problems that arise with that extension; and third, how
these problems scale when taken to the continuum limit in
RealLife. To alleviate some of these problems, I propose
an object — the density manifold — as a way to formulate
and visualize constraints on the organization of emergent in-
dividuals in order to simplify the analysis of structures and
their interactions.

Larger Than Life

LtL is a family of outer totalistic cellular automata (CA) de-
fined on a two-dimensional lattice Z2 where the state of the
LtL universe is given by a function u : Z2 → M, where
M := {0, 1}. Each lattice cell has a neighbourhood; here,
we will use the generalized Moore neighbourhood defined
N x
ρ := {x − y : ||y||∞ ≤ ρ, y ∈ Z2}, where ρ ∈ N

is the neighbourhood radius, x ∈ Z2 is the location of the
center cell, and || · ||∞ is the max-norm. We can define a
convolution kernel κ to give the density of on-cells in the
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neighbourhood of a cell at some point on the lattice x:

κ(y) := |Nρ|−11Nρ(y) (1)

κ ∗ u(x) = |Nρ|−1
∑
y∈Nρ

u(x− y). (2)

Then a rule (ρ, b0, b1, s0, s1), with birth interval [b0, b1] and
survival interval [s0, s1] such that

0 ≤ s0 ≤ b0 ≤ b1 ≤ s1 ≤ 1,

defines an LtL CA ξ :MZ2 →MZ2

:

ξ(u)(x) :=u(x) · 1[s0,s1](κ ∗ u(x))

+ (1− u(x)) · 1[b0,b1](κ ∗ u(x))
(3)

where 1A is the indicator function of a set A . Thus, GoL
is the LtL rule

(
1, 39 ,

3
9 ,

3
9 ,

4
9

)
that gives rise to what can be

called the Conway physics. If we interpret the elements of
M as components, then the Conway physics in turn gives
rise to a spatial chemistry on 0- and 1-components (off-
and on- cells) defined by a rule for transforming reactants
to products: u|Nxρ 7→ ξ(u)(x) (Beer, 2015).

While GoL is a single rule with interesting dynam-
ics that support many recurrent spatio-temporal patterns
(Adamatzky, 2010), it is a non-trivial task to find other LtL
rules with similar properties (Evans, 2001). Moreover, scal-
ing such rules to arbitrary neighbourhood size does not guar-
antee similar dynamics at those sizes. There is also the prob-
lem of determining the existence of stable structures for ar-
bitrary rules (Evans, 2003).

There are three general classes of such structures that we
are interested in here: still-lifes, oscillators, and bugs, gen-
eralizing the block, blinker, and glider, respectively, from
GoL. Still-lifes are fixed points of the dynamics, oscilla-
tors are limit-cycles, and bugs are periodic mod-translation.
Evans (2003) has provided rigorous results for the existence
of still-lifes and oscillators, as well as empirical results that
suggest that bugs can also be scaled arbitrarily. I will here
focus on the block generalizations, as they are the simplest
structures to analyse and are the only finite ones that have
been formally proven to exist in the continuum limit (Pivato,
2007, pp. 62).

An LtL rule (ρ, b0, b1, s0, s1) supports a still-life that gen-
eralizes the block when s0 ≤ (ρ+1)2/|Nρ| ≤ s1 and either:

(i) b0 >
ρ(ρ+ 1)

|Nρ|
; or

(ii) b0 ≤
n

|Nρ|
≤ b1

such that n < ρ(ρ + 1) and n 6= ab where a, b ∈ [0, ρ +
1] ⊂ Z (Evans, 2003, pp. 64). Any such rule would be suf-
ficient for purposes of demonstration, but I will use Bosco’s
rule

(
5, 34

121 ,
45
121 ,

33
121 ,

57
121

)
as its dynamics are chaotic, sim-

ilar to GoL, and it supports many analogous structures as

well, including a 6×6 block (Figure 1; Evans, 2001). In gen-
eral, though, the following will apply to any (ρ+1)×(ρ+1)
block.

Figure 1: Example of entities supported by Bosco’s rule in a
100× 100 periodic universe. In red is circled a 6× 6 block.
In blue is circled a bug. Black cells are on, white cells are
off.

Autopoiesis
Now to proceed to the first step of the analysis: what compo-
nents, exactly, constitute the block? We must first recognize
that a block cannot be identified de novo in arbitrary uni-
verses. This is because we are considering the block as a
recurrent pattern of production processes. If all the blocks
we observe are immediately destroyed after they are real-
ized, we have no way of recognizing their recurrent (closed)
nature. However, once we develop a criterion for distin-
guishing blocks, it then becomes possible to identify them
in arbitrary universes irrespective of whether their closure is
realized.

In what universes, then, can we distinguish a block? Cer-
tainly, we will consider the 1-components usually associated
with any recurrent pattern as belonging to the block; I will
denote this set B0. From this, we then want to identify those
components that support the closure of this pattern. Follow-
ing Beer (2004), I identify these components as belonging
to the union of the neighbourhoods of all the 1-components;
that is, all the components that can immediately influence
B0. The ρ-wide buffer of 0-components between B0 and the
environment then constitutes the boundary of the block (Fig-
ure 2); let this region be denoted B1. This boundary acts as
the interface between the environment and the block’s inter-
nal components.

The identification of a block as B(0,1) splits the LtL uni-
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Figure 2: 6 × 6 block supported by Bosco’s rule. Black
cells are 1-components in the region denoted B0; white cells
are 0-components in the region denoted B1; and grey cells
are unspecified environmental components in the region de-
noted E1.

verse in two: block and not-block. But we can further de-
compose the not-block region based on the speed at which
information can travel from the environment to B(0,1). Since
the maximum rate of information travel is ρ per unit time,
the immediate surrounding ring of width ρ constitutes the
complete set of components that can influence the block’s
state at the next step. The ring immediately surrounding this
is the complete set of components that can only influence the
block in at least two steps in time. Beer (2014) calls these
rings the 1-environment and 2-environment, respectively. I
will notate these as Ei for i ∈ N.

Our decision as to what counts as a block defines the con-
ditions under which the block exists — what configurations
of components are viable. If we consider 1B0 to be the
only viable form of the block, then there is a complete lack
of structural degeneracy: the structure cannot change with-
out the block disintegrating. However, we may also wish
to consider, for example, a block with two 1-components
in the boundary as viable, since this structure returns to the
canonical instance in one step (Figure 3). This is akin to the
‘rocket’ and ‘wedge’ forms of the glider in GoL, in that the
two structures are both viable and can be transformed into
one another (Beer, 2004). Note also that as the number of
block components increases with ρ, so does the number of
possible structures. Then, with the inclusion of this degener-
acy, our definition of the block turns into a set of structures,
each with its own constraints delineating what perturbations
will destroy it or transform it into another viable structure
(possibly itself). This set is partially observer dependent,
though, as deciding how many steps constitute an accept-
able “recovery time” is, to a certain extent, arbitrary.

To characterize a block in autopoietic terms, we need to
define what a production process is and how these processes
depend on one another. Here, the chemical metaphor is

Figure 3: Example of structural degeneracy in the 6 × 6
block. The black outline demarcates the components be-
longing to the block. The arrows indicate updates to the LtL
universe.

useful to relate local events in LtL to the metabolism and
self-construction of cells that is usually thought of as the
canonical instance of autopoiesis (Beer, 2015). This leads
us to conceive of processes as relations between reactant and
product components mediated by the update rule.

Due to the discrete-time nature of LtL, it is rather straight-
forward to carry over Beer’s definition to the more general
case. A process then becomes a (2ρ + 1) × (2ρ + 1) spa-
tial configuration of components. The product ξ(u)(x) be-
comes a function of the central component and the density
of 1-components in its neighbourhood (its ‘1-density’). We
can then sort these processes into four classes (Beer, 2015,
pp. 5): if the central component is 0, the process is a produc-
tion when κ∗u ∈ [b0, b1] and is a 0-maintenance otherwise;
if the central component is 1, the process is a 1-maintenance
when κ ∗ u ∈ [s0, s1] and is destruction otherwise.

We can further define a partial process (Figure 4) as an
equivalence class of processes that agree on a subset of com-
ponents, implying that the realization of such a process is
contingent on the particular environment in which it is em-
bedded (Beer, 2020b, pp. 204). These occur in the block
when N x

ρ intersects the environment. Note that the prod-
uct of a partial process may be fully determined by only a
subset of the neighbourhood when the birth and survival in-
tervals contain more than one element. Another interesting
possibility — dependent on structural degeneracy — is the
occurrence of partial destruction processes. For example,
the 1-components in the boundary in Figure 3 are normally
destruction processes, but may be sufficiently perturbed by
the environment and thus become 1-maintenance processes.

The dependency between two processes is a temporal
relation realized via the components they produce (Beer,
2015). Since a process is instantiated by a particular spa-
tial configuration of components, it is dependent upon an-
other when the product of a preceding process is part of that
spatial configuration (Figure 5). As neighbourhood size in-
creases, dependency relations give greater spatial detail. In
addition, the neighbourhood constraints implied by a given
process become even clearer. Figure 6 shows an example.
Two adjacent processes in the block always share at least
|Nρ| − (4ρ + 1) of their components, and as ρ approaches
∞, the proportion of components shared between those pro-
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Figure 4: A partial process with ρ = 5. Yellow cells are un-
specified, light grey cells are 0-components, and dark grey
cells are 1-components. The half-white, half-blue square in-
dicates that this process could be 0-maintenance or produc-
tion. The corresponding equations specify the conditions
under which the process is of either kind.

cesses approaches 1.
The point of defining processes and dependency as I have

is to construct the dependency graph, representing the au-
topoietic organization as a closed network of production pro-
cesses (Beer, 2015, 2020b; Beer et al., 2024). Extracting this
representation is fairly simple: enumerate all the dependen-
cies between processes in sequential block configurations.
In the case of the block, dependency relations are equivalent
to the spatial relations between processes, since no transla-
tion occurs. An example of dependency links in LtL is given
in Figure 5b.

The Cognitive Domain
From this organization, we can derive the interaction graph
of the block, describing perturbations in E1 and the transi-
tions they induce (Beer, 2014; Beer et al., 2024). These
perturbations are defined in terms of the block’s response
to them, and as such the classes of perturbations differenti-
ated by the block constitute an Umwelt (von Uexküll, 1992).
Maturana and Varela call this space of non-destructive per-
turbations the cognitive domain (Maturana and Varela, 1980,
1987).

The derivation is possible due to the neighbourhood con-
straints implied by the spatial configurations defining any
given process, thus permitting a spatial reconstruction of all
possible process sets that result in valid blocks when embed-
ded in space. The dependencies between sets of processes
can then be collapsed into edges representing transitions be-
tween viable structures (Figure 7).

There are two ways to analyse the structure of pertur-
bations: (i) explicitly enumerate all perturbations and the
block’s response to them (Beer, 2014); or (ii) derive con-
straints from the organization that define what conditions a
perturbation must satisfy to induce a given transition (Beer,
2020b). This latter option is the more preferable, especially
as both the space of viable structures and possible perturba-
tions increase with ρ. Thus, we will want to define an object
on which these constraints can be defined: the density grid
(Figure 8). The derivation of the grid from the dependency
graph is simple: replace the processes of a spatially em-

(a)

(b)

Figure 5: Process dependency in GoL and LtL. Red squares
indicate where the processes are in the block. Black indi-
cates a 1-maintenance process, white a 0-maintenance pro-
cess, and blue a production process. Brown arrows indicate
dependency relations such that the product of one process
is a reactant in the other. Only two dependency links are
shown, but there should be a link for every reactant in B(0,1).
(a) Dependency links in the 2 × 2 GoL block. (b) Depen-
dency links in the 6× 6 block supported by Bosco’s rule.

bedded graph with the 1-densities of those processes. The
grid can also be generated directly from the universe by
Equation (2). For compactness of notation, we will reno-
tate Equation (2) as an instance of the more general density
function Ψ.

The density grid can be used to derive perturbation classes
by setting constraints on the 1-densities of each viable struc-
ture such that transitions to other viable structures are in-
duced. For example, the constraint that induces a transition
from the canonical block to itself is shown in Figure 7. Note
that the constraint need only be specified on the boundary
B1, since only those components are directly influenced by
the environment. Thus, the density grid over the internal
components is always invariant with respect to any particu-
lar viable structure.

Scaling
A few observations can be made about how autopoiesis gen-
eralizes to LtL. First, the significance of individual compo-
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Figure 6: Two adjacent processes in the block. Yellow cells
are unspecified, light grey cells are 0-components, and dark
grey cells are 1-components. The process on the right is
(1, 1) from the process on the left.

Figure 7: Interaction graph of a block without structural de-
generacy. Ψ is the density function.

nents scales inversely with ρ (at least when the birth and
survival intervals also increase with ρ). What this means is
that it becomes more and more useful to consider compo-
nents and processes in sets with measure corresponding to
the area they cover. Second, increasing neighbourhood size
raises concerns about the locality of the dynamics. We can
resolve this point by noting that, if we conceive LtL uni-
verses as existing in R2, scaling the size of cells in propor-
tion to (ρ + 4)−2 ensures blocks of different radii can be
contained within the same area. Thus, in a certain sense, we
can consider the neighbourhood to be a constant region in
R2 while we change the spatial density of cells in the uni-
verse.

Constructing the dependency graph is a matter of enu-
merating the dependency links between processes, and con-
structing the interaction graph is a matter of enumerating
transitions between viable structures. Moreover, in both ob-
jects, increasing structural degeneracy adds more vertices to
the graphs, corresponding to the number of viable structures
or the number of processes composing those structures.

To estimate this scaling, we will approximate the num-
ber of viable structures by assuming that the preimages of
a given configuration scale similarly with size as in GoL
(Beer, 2017). Let f(xn) be a real polynomial function
of x with degree at most n; then we estimate the num-
ber of preimages of a block by 2f(ρ

2). It is more difficult
to be specific about the number of edges in the interaction
graph, but we can get a rough approximation by assum-
ing that, on average, each configuration has a viable transi-

0.05

0.10

0.15

0.20

0.25

Figure 8: Density grid of the 6 × 6 block with ρ = 5. The
color bar indicates values of Ψ. All points with Ψ = 36

121 ≈
0.3 are 1-components (the center yellow square).

tion to some constant fraction γ of all other configurations.
Thus, γ2f(ρ

2)2f(ρ
2) = γ22f(ρ

2) provides an estimate of the
number of edges. If we assume all viable configurations
have, on average, the same number of components, then
the number of vertices in the dependency graph is roughly
(3ρ+1)22f(ρ

2). For the edges, we will assume that the aver-
age number of dependency links in a viable transition is the
same as the number of dependency links between the canon-
ical block and itself. This turns out to be 1

2 (5ρ2 + 6ρ + 1)
when ρ is odd, making the total number of edges in the
dependency graph approximately γ

2 (5ρ2 + 6ρ + 1)22f(ρ
2).

These estimates are summarized in Table 1.

Interaction Dependency

Vertices 2f(ρ
2) (3ρ+ 1)22f(ρ

2)

Edges γ22f(ρ
2) γ

2 (5ρ2 + 6ρ+ 1)22f(ρ
2)

Table 1: Table of scaling estimates for the interaction and
dependency graphs of blocks in LtL.

We now have a template for how to proceed to other
model universes. First, we identify a criterion for distin-
guishing unities, and thus also the physical boundaries of
such unities. Second, we want to define processes as spatial-
chemical operations that induce dependency relations be-
tween processes that are local in space and sequential in
time. Finally, the main object we will want to define is the
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closed network of dependency relations between production
processes, such that the components thus produced consti-
tute the system as a distinct unity in space. From this net-
work can be derived a cognitive description of the system.

RealLife
RealLife is a family of Euclidean automata of arbitrary
dimension (Pivato, 2007). The set of all possible 2-
dimensional universes in RealLife is defined as a set of func-
tions u : R2 → M. Neighbourhoods can be defined with
any p-norm, where p =∞ gives a square and p = 2 gives a
circle: N x

ρ = {x− y : ||y||p ≤ ρ, y ∈ R2}. Here, ρ ∈ R+.
Thus, the convolution of Equation (2) can now be defined in
continuous space:

κ ∗ u(x) = λ [Nρ]−1
∫
Nρ

u(x− y) dλ[y] (4)

where λ is the 2-dimensional Lebesgue measure on R2. We
also change the rule parameters to satisfy b0 < b1 (instead
of b0 ≤ b1, as in LtL). The update rule in RealLife is the
same as the LtL rule, except we use Equation (4) instead of
Equation (2).

Pivato has proven the existence of still-lifes in RealLife
(2007, Proposition 3.3). Specifically, let B0 ⊂ R2 be a ρ×ρ
square of 1-components. Then, if

(
λ[B0]/λ[Nρ]

)
∈ [s0, b0),

1B0 is a still-life that generalizes the block. As before, we
will identify B0 as the internal 1-components and the imme-
diately surrounding ring of width ρ as the block’s boundary
(Figure 9).

Figure 9: The block defined in RealLife with the max-norm.
B0 is the region of internal 1-components, B1 is the bound-
ary of 0-components, and E1 is the region of unspecified en-
vironmental components.

One of the scaling properties in LtL noted above is imme-
diately apparent here: individual components are irrelevant
to the dynamics. This is because the convolution is defined

in terms of measure, and all countable sets have a Lebesgue
measure of 0. As such, we will want to abstract over such
variations as they are not really equivalent to the more inter-
esting cases of structural degeneracy where variation does,
in fact, have dynamical implications.

In defining a process, we can carry over much of what we
did in LtL (Figure 10). The main complication introduced
by the continuous case is the abstraction over countable vari-
ation. However, the central component of a given process
cannot be included in those countable sets since the product
would otherwise be ill-defined. We can notate subsets ofNρ
as belonging to the block or the environment, respectively,
by a partition {φ′, φ′′}.

Figure 10: Processes and dependency in RealLife. The de-
picted dependency relation is between the canonical block
configuration and itself. φ′ denotes the region belonging
to the block; φ′′ denotes the region belonging to the envi-
ronment; v is the dependency vector between the processes
centered at a and b. The product ξ(u) at b is potentially un-
derdetermined, since λ[φ′′] > 0.

The dependency between processes, in contrast, is more
difficult to deal with. The block, at least, makes matters
simpler since we need not worry about translation between
structures. A dependency link then becomes a spatial rela-
tion between processes. A vector between central compo-
nents is sufficient for this (Figure 10). The direction of this
vector depends on whether we are talking about one pro-
cess enabling another, or one process being dependent on
another. Both formulations turn out to give us the same in-
formation.

However, this is insufficient to define the dependency
manifold as abstracted from the particular spatial embedding
of the block. What we need is a way to define a space of
processes in an essentially spatial manner without explicit
dependence on the coordinates of the universe in which the
block is embedded. One possibility is suggested by the sim-
ilarity of adjacent processes: we could define a set of func-
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tions that transform processes in a way equivalent to a spatial
shift of the neighbourhood (Figure 11). The main difficulty
would lay in defining a constraint on these functions such
that only valid processes would be included in the codomain.
Moreover, these functions and their constraints may pro-
duce more than one viable configuration, further demanding
a way to partition the codomain so as to separate these.

Figure 11: Schematic of functions and a constraint that to-
gether generate an abstract process space. S is a set of trans-
formation functions s1 and s2. The process on the left is
valid. Applying s1 generates an invalid process. Applying
s2 generates a valid process. Thus, the constraint C on S
selects s2.

Once this is done, though, we can define dependency re-
lations using vectors in this space, as opposed to the coor-
dinate space of R2. Thus, the continuous generalization of
the dependency graph of a block appears to be given by the
neighbourhood relations in an abstract process space. How-
ever, it is not obvious how we should define the dependen-
cies between different structures: do they exist in the same
process space? If so, then how do we differentiate the de-
pendencies a given process has on different structures? If
not, then it appears we need an additional function to map
processes to other structures, dependent on the existence of
viable transitions between them.

Continuity further introduces another complication into
structural degeneracy: the set of viable block structures is
potentially uncountable. Interestingly, though, the transi-
tions between these would still be discontinuous since time
remains discrete in RealLife. This suggests that the inter-
action manifold, generalizing the interaction graph, exists in
a continuous space of structures with discrete mappings be-
tween them. Again, it is not obvious how we should define

this space in general, though it may be possible to parameter-
ize certain regions in a more tractable manner. For instance,
we could define a class of block configurations with a ring
of some width embedded in its boundary. Then we could
analyse what transitions are possible — if any — within this
class.

Figure 12: Smooth density manifold generated by Ψ for a
block in an empty environment in RealLife. In orange is
the manifold, and in pink is a constraint over the boundary.
x1 and x2 are the coordinate axes of B(0,1). A perturbation
can increase the density over the boundary. If any point on
the manifold reaches the constraint, the transition induced
on the structure changes.

To carry out such an analysis, we again shift our focus
to local density, now forming a manifold (Figure 12). As
with the block in LtL, we can define a constraint that induces
specific transitions (the pink surface in Figure 12). Thus,
it is hoped, we can begin to get an analytical grasp on the
smaller sub-problems such that we can develop the tools we
will need to address more general problems.

Discussion
The goal of this paper has been to sketch the landscape of
problems in using Larger than Life and RealLife as model
universes for studying the autopoietic organization of emer-
gent individuals. I showed how the concepts and definitions
used by Beer in the Game of Life cellular automaton could
be extended in a fairly straightforward way to LtL. I also
pointed out certain features of how LtL scales and proposed
density grids and constraints as useful analytic constructs to
cope with the growth of objects scaled with the neighbour-
hood. Finally, I provided an outline of the problems and
possibilities introduced in RealLife.

The main challenges now apparent in using RealLife are
in defining abstract process and structure spaces independent
of the coordinate space in which an entity is embedded. And
even when this is done, there still remain questions as to how
we should relate structural degeneracies and translations in
these spaces.

The density manifold appears to be a smooth object, and
thus it would be useful if we could differentiate on it. For in-
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stance, we may want to find local maxima that are tangent to
the constraint in order to determine the set of perturbations
that induce a given transition. However, since Ψ is defined
as a convolution of two indicator functions, its derivative is
always zero, or else undefined. Thus, if we are to define —
or else approximate — the density manifold in a differen-
tiable manner, different mathematical tools will be needed.

Moreover, the existence of oscillators and bugs has yet to
be proven in RealLife. It may also be the case that, at the
continuum limit, these structures are no longer perfectly pe-
riodic (Pivato, 2007, pp. 67). Then it becomes imperative
to analyse these structures with a modified closure condi-
tion, but to ensure that we do so in a theoretically principled
manner.

The questions pertaining to autopoiesis that have con-
cerned us here are only a small fraction of a far larger space
of ideas. For instance, we could also investigate the rela-
tion between operational and physical boundaries, that have
here been conflated (Virgo et al., 2011). Such an investi-
gation would deal intimately with the non-arbitrarity of the
conditions of observation; we would also need to under-
stand how the epistemological concepts used in the biol-
ogy of cognition (Varela, 1979; Maturana, 2002) translate
to these model universes. Beer has previously investigated
the origins and structural coupling of gliders in GoL (Beer,
2020a,c), so there is already some groundwork on which
these ideas could be further pursued. One could also com-
pare the toy chemistries of LtL and RealLife with various
formalisms in theoretical chemistry, as has previously been
done for Lenia and reaction-diffusion systems (Kojima and
Ikegami, 2023).

In discussing structural degeneracy, I employed the con-
cept of viability. This notion has a rich history with au-
topoiesis (Varela, 1979; Bourgine and Varela, 1992), and
much independent theoretical development (Ashby, 1960;
Aubin, 1991; McShaffrey and Beer, 2023). With respect to
living systems, viability theory aims to delineate the exis-
tence and non-existence of the system as a distinct entity
— the boundary between life and death. Thus, an under-
standing of viability provides a constraint that bounds the
conditions under which a system can prolong its existence
through its continued operation. Such a constraint can be
derived directly from the organization of an emergent indi-
vidual (Beer et al., 2024), but under certain conditions, we
can get a sense of the viability constraint using density man-
ifolds. Specifically, if we assume knowledge of an individ-
ual’s viable structures, and that the individual does not move
(does not gain environmental components), we can assign
density constraints on a given viable structure such that each
corresponds to a transition in the cognitive domain. Density
constraints then provide a local picture of viability by to-
gether specifying what perturbations cannot induce any vi-
able transition from a given structure. For example, if we
consider the canonical block to be the only viable structure,

then Figure 12 depicts the boundary between conditions un-
der which the block does or does not persist, depending on
whether the manifold is below or above the constraint, re-
spectively. Hence, density manifolds serve as a practical al-
ternative to deriving constraints directly, even though they
are theoretically subordinate to the organization (the viabil-
ity of structures is determined by the organization) and, in
their current form, do not account for moving individuals.

Finally, Lenia offers an interesting contrast to RealLife in
being continuous in both space and time (Chan, 2019). This
is significant because the mathematical tools needed to satis-
factorily analyse such systems from an autopoietic perspec-
tive, at the moment, would have to be invented from scratch.
Thus, using RealLife as a stepping stone to the fully contin-
uous case creates a bridge between structures in the entirely
discrete universe of GoL and entirely continuous universes
such as Lenia.
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