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Biological Organisation and Viability: A Theory of Autopoiesis in Cellular and

Euclidean Automata

Increasingly, biologists are emphasising the cell as the most fundamental unit of life,
and importantly, a view of the cell as an emergent, dynamic object irreducible to its molec-
ular composition – “greater than the sum of its parts.” But what makes a cell itself living?
Most answers to this question are unsatisfactory: lists of properties or behaviours that
always have exceptions. Moreover, there is a lack of consensus that does not appear to be
near resolution.

The theory of autopoiesis o昀昀ers a potential solution here, providing an operational def-
inition of the organisation of a cell, independent of what molecules compose it. Autopoietic
theory allows us to answer questions about when a cell dies, and how it can behave. How-
ever, for it to realise this utility, rigorous theories need to be developed for speci昀椀c models of
emergent individuals. Beer (2020b) has previously used the Game of Life cellular automa-
ton as one such model, and developed a mathematical theory of autopoiesis that can predict
the behaviour and death of an emergent individual (Beer, McSha昀昀rey, & Gaul, 2024).

This thesis extends and reformulates this work to a broader class of cellular automata,
called Larger than Life (LtL) (Evans, 1996). I then further extend the LtL theory to a Eu-
clidean automata, called RealLife (Pivato, 2007), and provide evidence of the convergence
of autopoiesis in LtL to RealLife. I also introduce a method for deriving automata rules
from the organisation of an individual.

Finally, I discuss the implications autopoietic theory has for our understanding of life
and cognition, including a reevaluation of the relation between autopoiesis and the enactive
approach to cognition (Di Paolo, 2005; Varela et al., 2017).
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Chapter 1

Introduction

Biology encompasses a vast range of phenomena, from the molecular details of bacterial

metabolism, to the intelligent behaviour of corvids; from the evolution of language, to the

reciprocal symbiosis of coral and algae. But despite the great diversity of life apparent all

around us, there is just as clearly something that uni昀椀es these phenomena – something that

makes them distinctly biological. The history of biology, especially since the nineteenth

century, can be read as the history of attempts at unifying our understanding of all those

things we call living (Morange, 2021; Varela, 1979). But how far have we come? With the

dominance of molecular biology in the twentieth century, many came to see the problem

as solved: living systems were carriers of a “genetic code,” and all of their characteristics

could be successfully explained in terms of simple physics and chemistry, and the origin of

these characteristics by natural selection on genes (Dawkins, 1976; Judson, 2013; Mayr,

1961; Monod, 1971; Morange, 2005, 2010). On the other hand, there were some who saw

the question of delineating life from non-life as simply beyond the purview of scienti昀椀c

concerns (Foucault, 1975; Jacob, 1982; Morange, 2010).
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Most biologists now recognise both of these positions as problematic. The reductive

molecular view of life is unable to account for the emergence of complex phenotypes that

cannot be attributed to the simple action of genes (Kirschner et al., 2000; Woese, 2004).

Instead, cells are commonly seen as the most basic unit of life (Mukherjee, 2022). Our

understanding of cells themselves has also changed: they are complex, self-organising

dynamic patterns undergoing constant material turnover of their components (Hodgins,

2009; Kirschner et al., 2000; Margulis & Sagan, 2000; Wilmsen & Kost, 2025). Some even

see life as being distinguished by purposeful agency (Ball, 2023). It is also clear that cer-

tain problems in biology cannot be solved without a clearer notion of what exactly it means

for something to be living, such as the origins of life on Earth (Ruiz-Mirazo & Moreno,

2004) and life on extraterrestrial planets (Colón-Santos et al., 2024).

However, despite the reinvigoration of attempts to answer the question “what is life?”,

there is hardly any consensus on what that answer is, or even what it looks like (Colón-

Santos et al., 2024; Cornish-Bowden, 2006, 2011; Wilmsen & Kost, 2025). But there are

still some general characteristics that are often seen in proposed de昀椀nitions of life: organ-

isms have complex metabolism, they are spatially delimited, they adapt to stimuli, they

reproduce with variation (or, they have the capacity for Darwinian evolution), they are

self-organising systems, they exhibit growth, they are homeostatic, etc. (Colón-Santos et

al., 2024; Morange, 2005; Mukherjee, 2022; Nurse, 2021; Pross, 2016; Rasmussen et al.,

2022; Wilmsen & Kost, 2025). All of these, each on their own or in any combination, is

unsatisfactory. The most basic problem with most of them is that they describe what life

does, but not what it is. For instance, it is certainly true that organisms adapt to stimuli in

their environment, but this does not tell us how to demarcate the organism from that en-

vironment. Similarly, the mere fact of reproduction does not say what is being reproduced,

and evolution does not say what kinds of populations are being evolved (if natural selection

can be applied to universes (Smolin, 2004), does that make them living?). There are also

clear exceptions to some of these characteristics: mules – and, for that matter, most elderly

humans – cannot reproduce, but are they not still living things? On the other hand, the
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less problematic characteristics are still quite vague, e.g., what does it mean for a system

to be “self-organising”?

Another class of de昀椀nitions, more common in origins of life and astrobiology research

(Colón-Santos et al., 2024), is to de昀椀ne life by the biomolecules we observe on Earth, such

as proteins, nucleic acids, etc. But such de昀椀nitions fail to su昀케ciently take into account the

material turnover mentioned above. If the particular molecules that compose an organism

at any given time can be replaced, and thus do not determine whether that organism is

alive, why should classes of molecules be seen any di昀昀erent? Put simply, it is the dynamic

form of an organism that matters, not what instantiates that form.

The insu昀케ciency of all these de昀椀nitions can be made even clearer by asking a simple

question: when does an organism die? Clearly, a molecular de昀椀nition is insu昀케cient here

since all would agree that a random mixture of biomolecules does not constitute a living

system. On the other hand, the list of properties given above are either too general, or not

relevant. There are non-biological systems that are self-organising, that reproduce, etc.,

and properties like being a product of evolution have little bearing on how we demarcate

whether a system is dead here and now.

What we need, then, is a more precise operational de昀椀nition of what makes something

living – a notion of the emergence and identity of biological individuals as persistent dy-

namic forms irreducible to the components that realise it at any given time. It is thus the

task of theoretical biology to provide a rigorous theory of biological identity – an answer

to the question: what makes a living system living?1 Importantly, such a theory must,

as a consequence of the irreducibility to its components, contain an identity-realisation

duality: the organism is logically distinct from the molecules that compose it. This per-

spective reframes many biological questions, making explicit the distinction between the

space of possibilities and the contingency of particular realisations. This allows us to ask

new questions about living systems:

1I want to be clear that I do not interpret this as a matter of de昀椀ning life per se, but of providing an explicit
account of (some of) those systems that we call living. That is, the theory I seek is not meant to police language
of what we should or should not call living, but to provide an alternative and more rigorous way of talking that
helps to answer speci昀椀c questions and clari昀椀es our conceptual frameworks.
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• What is it made of? ⟹ What are its possible realisations?

• What does it do? ⟹ What can it do?

• When does it die? ⟹ When is its identity no longer realised?

To be sure, not every question in biology requires such a de昀椀nitions, nor is it necessarily

bad that most current proposals are unsatisfactory. It is useful to have guiding intuitions

about how we should conceptualise biological problems, even if such intuitions are at this

point imprecise. Moreover, a pluralistic approach to understanding life may prove more

immediately practical, as is the case in astrobiology (Colón-Santos et al., 2024). But if we

accept the basic tenet that the whole range of diverse biological phenomena forms a uni昀椀ed

intelligible class, distinct from other domains of science, then it is imperative that biology,

as a whole, have a theoretical framework that de昀椀nes its subject matter precisely. What I

propose is that a theory of biological identity ful昀椀lls this demand.

1.0.1. Theories of Biological Identity

There is a rich history in theoretical biology of attempts at formulating a proper theory

of biological identity. This is sometimes traced all the way back to Kant’s introduction

of the term “self-organisation” (Kant, 1790/2000; Weber & Varela, 2002). But it was not

until later in the twentieth century that serious scienti昀椀c e昀昀orts were dedicated to the

question of biological identity, at least in its current manifestation (Cornish-Bowden and

Cárdenas (2020) gives a brief history and overview of some of these theories). Some of

the most prevalent theories still referenced today include (�,�) systems (Rosen, 1991),

hypercycles (Eigen & Schuster, 1979), chemotons (Gánti, 2003), autopoiesis (Maturana &

Varela, 1980), autocatalytic sets (Kau昀昀man, 1986), and closure of constraints (Montévil &

Mossio, 2015).

These all certainly deserve further development in their own right, especially as they

each emphasise di昀昀erent aspects of what makes living systems unique. But one has to

make a choice on which to develop, and so I have chosen autopoiesis (Maturana & Varela,
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1980; Varela, 1979). I do this because autopoiesis has the potential to be an especially

powerful theory with implications far beyond that of biology. Foremost among these is

an intimate connection between identity and cognition, and thus a grounding of cognitive

science in biology. It also emphasises viability to a greater extent than other theories: the

capacity of a system to survive, and what it means for it to die (Bourgine & Varela, 1992;

Di Paolo, 2005, 2009; Varela, 1979). This therefore puts autopoiesis in position to be a

very useful theory to address scienti昀椀c problems concerning behaviour, viability, and the

relation these have to the self-maintaining processes that constitute the individual as a

distinct biological identity.

1.1. Epistemology

Autopoietic theory relies on a few basic epistemological concepts concerning how observers

(or more properly, observer-communities; Varela, 1979) make descriptions. Most simply,

a description consists of unities and their properties/relations. Distinct classes of unities

and relations constitute distinct descriptive domains, or domains of description – basically,

ways of describing things. For instance, we can consider a particle-level quantum mechani-

cal description of a chemical reaction, and a stoichiometric one. In the quantum mechanical

one, the basic unities are particles with quantum states, related to one another by their

position in various 昀椀elds. In the stoichiometric description, the basic unities are species

of molecules, with concentrations, rates of change, etc. These descriptive domains are,

strictly speaking, incommensurate with one another, in the sense that the phenomena of

one are not proper to the other – individual particles do not have concentrations.

An observer can also mediate between descriptive domains by mapping unities in one

to collections of unities in another, giving rise to composite unities. Thus, an observer can

consider di昀昀erent descriptions of the same system, 2 and associate phenomena in one with

2Of course, what grounds “sameness” here will depend on a further descriptive domain, ultimately grounded
in the pragmatics of embodied observers making descriptions. A fuller discussion of this would involve unrav-
elling the whole epistemological framework here, but for my purposes, it will be su昀케cient to simply say that
two descriptions are of the same system when manipulating that system involves manipulating the same place



6 Chapter 1

the other – that is, explaining one phenomenon in terms of the other, on the grounds of the

map between their respective descriptive domains.

With this, we can understand the most important concept in autopoietic theory, besides

that of autopoiesis itself: the distinction between organisation and structure. The structure

of a system is simply all of the physical relations between, and properties of, its components

through time. The organisation of the system is any subset or abstraction of those rela-

tions. Thus, we say that a structure realises a particular organisation when a subset of its

relations are precisely those of the organisation. This implies that a single structure can

realise many di昀昀erent organisations; intuitively, this is analogous to describing the same

dog, for example, as this dog, a dog, a mammal, an animal, etc.

When the unities and relations generated by such a process of abstraction in turn

generate a qualitatively distinct domain of description, we say this new domain is emergent

with respect to the original from which it was abstracted. Thus, this is a relatively weak

sense of emergence in that it is necessarily relative to an observer, and any interaction

between distinct descriptive domains is necessarily mediated by an observer.

In all, then, this epistemological framework allows us to characterise systems 昀椀rst and

foremost by their organisation, such that they can be realised in space, yet remain distinct

from their structure at any given moment. Moreover, the observer plays a central role in

thinking about this dichotomy, and especially in mediating between di昀昀erent domains of

description. The central task of theoretical biology is then to determine the organisation

of living systems, and to explain how the constraints implied by its realisation in turn con-

strain the phenomena proper to di昀昀erent domains of description, whether those be molecu-

lar, behavioural, ecological, or evolutionary. This is precisely what autopoietic theory aims

to do.

in physical space.
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1.2. Autopoiesis

Maturana and Varela proposed autopoiesis as the de昀椀ning organization of living systems

(Maturana & Varela, 1980; Varela, 1979; Varela et al., 1974). The original de昀椀nition is

quite verbose:

An autopoietic machine is a machine organized (de昀椀ned as a unity) as a network

of processes of production (transformation and destruction) of components that

produces the components which: (i) through their interactions and transforma-

tions continuously generate and realize the network of processes (relations) that

produced them; and (ii) constitute it (the machine) as a concrete unity in space

in which they (the components) exist by specifying the topological domain of its

realization as such a network. (Maturana & Varela, 1980, pp. 78–79).

More intuitively, we can think of an autopoietic system as a network of processes, anal-

ogous to chemical reactions, with two properties:

1. (Self-Production) The network continuously regenerates itself through the compo-

nents it produces,

2. (Self-Distinction) The network produces and maintains a spatial boundary that it

depends on.3

Thus, the term auto- (self) poiesis (production) (from the Greek: αυτóς/self, πoιειν/to pro-

duce). The paradigmatic example of an autopoietic system is the single cell. Its autopoietic

organisation consists of all the reactions (processes) that produce the components of the

cell (DNA, proteins, lipids, sugars, etc.) and the reactions that produce the reactants of

these processes. Among the components that this network produces are phospholipids

that constitute the plasma membrane distinguishing the cell from its environment and
3Technically, an autopoietic system need not exist in physical space, according to the original de昀椀nition.

However, given its primary application to livings systems, physical space is almost always assumed. In any
case, Maturana (2002) made clear his view that autopoiesis could only exist in the molecular domain.
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(a) (b)

Figure 1.1: Schematic illustration of the autopoiesis of E. coli. (a) An illustration of part
of the autopoietic organisation of E. coli. Each gray box is a process (a chemical reaction).
Arrows between processes processes represent the production by one process of a reactant
(green) in the other. (b) An illustration of the ‘run and tumble’ behaviour of E. coli.

preventing the disintegration of the network by di昀昀usion. To make this even more con-

crete, consider the schematic illustration of the bacterium Escherichia coli in Figure 1.1a.

Here, the gray boxes represent reactions/processes, and arrows represent the exchange

of components whereby one process produces a molecule (green circle) that then becomes

a reactant in another process. Every molecule that constitutes the cell structure at any

given instance is understood to be realising a relation between processes. Thus, the exis-

tence of DNA molecules, proteins complexes, the plasma membrane, etc., are implicit in

the network as intermediate enabling relations. The power of autopoiesis lies in how this

implicit speci昀椀cation allows us to talk both about living systems as independent from their

structural realisations, and in terms of their possible realisations.

An important interpretative point about this de昀椀nition is the precariousness of au-

topoietic systems (Beer & Di Paolo, 2023). In its original form, the de昀椀nition allows trivial

cases in which none of the processes of the network really depend on any other processes

for their continued operation. In contrast, it is clear that any chemical reaction within a

cell is dependent on other reactions, most obviously so with respect to the enzymes needed

for most reactions to proceed at the necessary rates.

Notably absent from the de昀椀nition of autopoiesis is any notion of reproduction or evo-
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lution. This is because, as mentioned above with respect to evolution, these concepts are

logically dependent on the identity of the reproducing systems. That is, there is something

reproduced, and that something is precisely the autopoietic organisation. Another way to

say this is that autopoiesis is a systemic characterisation of living systems, not a list of

properties in relation to a context outside the system itself.

As noted above, autopoiesis has many far-reaching implications for how we think of

various scienti昀椀c problems, including cognition, viability, evolution, the origins of life, ex-

traterrestrial life, phenomenology, and epistemology, just to name a few. I will choose to

focus on cognition and viability, as these constitute, with autopoiesis itself, the essential

core of autopoietic theory upon which all the other implications rest.

1.2.1. Cognition

Because an autopoietic system distinguishes itself as a unity in space, we can also describe

it as a single behaving system. A central claim of autopoietic theory is that the organisa-

tion of a system determines the space of its possible behaviours. This is because the organ-

isation speci昀椀es what structural transitions are permissible with respect to itself. That

is, at any given instant, some structural transitions will destroy the organisation, while

other will preserve it. But these internal structural transitions can just as well be seen

from a di昀昀erent perspective as the behaviour of the system. To illustrate this, consider

again E. coli (Figure 1.1b). Behaviourally, an E. coli bacterium will swim toward higher

concentrations of nutrients (“run”) and will randomly change directions (“tumble”) until

a positive gradient is found (Sourjik & Wingreen, 2012). These behaviours are regulated

by protein modi昀椀cations and a system of signalling proteins that ultimately in昀氀uences the

昀氀agellar motors. From an autopoietic perspective, these protein interactions are di昀昀er-

ent concatenations of processes in the organisation. Thus, the organisation, by describing

all the enabling relations between processes, implies the possibility of both behaviours as

di昀昀erent realisations of the network.

In this way, the organisation establishes a perspective on the world by di昀昀erentiating
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environmental conditions based on what permissible structural transitions they induce. E.

coli distinguishes between lower and higher concentrations of nutrient because it behaves

di昀昀erently in each circumstance. Put another way, the realisation of the E. coli organisation

gives rise to di昀昀erent behaviours depending on the environment in which that realisation

is situated, and this di昀昀erentiation is determined by the organisation. The whole space of

survivable perturbations forms a system’s domain of interaction.

This combined implication of behaviour and perspective is what justi昀椀es the claim that

autopoietic systems are cognitive systems (Maturana & Varela, 1980) — the domain of do-

main of interaction then becomes the cognitive domain. That is, cognition is understood

here to be the behaviour and perspective of an autopoietic system. This is di昀昀erent from

how cognition is generally understood in cognitive science (Boden, 2000), or even by oth-

ers in the autopoietic literature (Di Paolo, 2009; Thompson, 2007). For instance, Di Paolo

(2005) understands cognition to require that the system not only establish a perspective,

but also a norm or goal with respect to which it acts. However, it is worth bearing in mind

that we need not call all autopoietic systems cognitive, as Maturana and Varela are not

claiming that all autopoietic systems exhibit the full richness of cognitive behaviour ob-

servered in animals. Thus, if one wishes to use the word “cognition” more strictly, this is

昀椀ne, so long as they recognise the relation between behaviour and perspective implied by

autopoiesis and the continuity of this relation from cells to humans (Maturana & Varela,

1987). For this thesis, I will use the word cognition the same way as in the original litera-

ture, i.e., all autopoietic systems and cognitive systems.

The structure-organisation distinction also makes clear the co-determination of be-

haviour by by both the organism and its environment: the organisation does not determine

the behaviour of the individual, but only the possibilities in any given moment. For be-

haviour to emerge, the environment must select paths through the permitted structural

transitions, through a process called structural coupling (Figure 1.2). Thus, the organisa-

tion of E. coli does not determine whether it will run or tumble, until it is embedded in a

particular environment. Structural coupling is also what give rise to the historical dimen-
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Figure 1.2: A schematic illustration of structural coupling in E. coli. Each arrow represents
a di昀昀erent transition between behaviours. Gray is the continuation of running. Orange is
the transition for running to tumbling. Blue is the transition from running to biol昀椀lm
formation or quorum sensing. Red is the transition from tumbling to death. Purple is the
transition from tumbling to running.

sion of living systems, for the paths of structural transitions that an autopoietic system

takes is dependent upon sequences of environmental conditions external to the organisa-

tion (though the space of possible paths is again determined by the organisation).

1.2.2. Viability

By much of the same reasoning as for cognition, the autopoiesis of an individual will also

delimit the environmental conditions that destroy its organisation, and thus kill it. Simi-

larly, organisation determines the viable structural con昀椀gurations of an individual. Again,

using E. coli as an example, the organisation would determine the space of possible antibi-

otics, nutrient concentrations, etc., that could kill the cell, and the particular structure the

cell must be in under those conditions, while also strictly delimiting the precise timing of

when the cell is considered to be dead (i.e., when the organisation is destroyed).

Viability in autopoietic theory is often understood as it is formulated by Ashby (1960).4

4Aubin (1991) is also a relevant source of ideas on viability and in the context of control theory, but his work
is referenced much less in the literature on autopoiesis (but see Bourgine and Varela, 1992).
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Figure 1.3: Schematic illustration of viability in E. coli. On the left, the black arrows
represented environments that do not destroy the organisation, while red arrows do. The
organisation of E. coli determines what environments belong to which group. On the right
is a sequence of E. coli with increasingly broken membranes and lower internal concen-
tration. The organisation determines the exact point at which the bacterium is considered
dead (the red line).

Ashby employed the notion of essential variables as the variables of the system whose val-

ues determine the whether the system is viable: if any essential variable exceeds some

range of values, then the system is no longer viable (it is non-functioning, or dead). These

ranges of values give rise to a viability region where all of the essential variables are within

their acceptable range. The boundary of this region is where any essential variable is at

the maximum or minimum of its range. Applied to E. coli, the essential variables might

be the concentration of glucose or lactose within the cell, the internal osmotic pressure,

the pH within the cell, etc. If any of these variables exceed certain limits, the bacterium

will die. This is often how viability is formulated in computational biology, independent of

Ashby (e.g., Gha昀昀arizadeh et al., 2018).

A prevalent concept in current autopoietic theory related to viability is adaptivity, in-

troduced by Di Paolo (2005). It is meant to be an extension of autopoiesis in order to account

for agency and sense-making: a valenced perspective on the world as meaningful for the

system (Thompson, 2007; Varela et al., 2017). Adaptivity is de昀椀ned as the capacity of a

system to regulate itself and its relation to the environment so as to avoid approaching the

boundary of viability too closely. This is claimed to be a necessary and su昀케cient condition

for an autopoietic system to establish for itself intrinsic norms that it behaves with respect

to – E. coli swims up a a nutrient gradient because it is good for the cell (Di Paolo, 2005,
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p. 437). This is also taken to imply an intentionality whereby a individual is directed to-

ward its own future (Di Paolo, 2005, p. 443). Adaptivity, then, is a bridge from autopoiesis

as originally de昀椀ned to the enactive conception of cognition as the bringing forth of a mean-

ingful world, and its intimate relation to phenomenology (Di Paolo, 2005, 2009; Di Paolo

et al., 2018; Thompson, 2007; Varela et al., 2017).

There are of course still controversies concerning how precisely to interpret the def-

inition of autopoiesis. Must the boundary necessarily be a physical boundary? Can the

system extend beyond its physical boundary? Can the organisation of a system change

over time? Are cells the only instance of an autopoietic system? Must every component in

the network be produced by the network? Is autopoiesis both necessary and su昀케cient for

life? Does autopoiesis really imply “cognition” (Boden, 2000; Di Paolo, 2009; Fleischaker,

1988; Luisi, 2003; McMullin, 1999; Virgo et al., 2011)?

Much of this discussion, however, has been carried out without reference to any pre-

cise de昀椀nitions of the basic concepts of autopoiesis. Thus, depending on how one implicitly

understands autopoiesis, they may rightly come to a completely di昀昀erent conclusion from

another, simply because they have a di昀昀erent understanding of, say, what “process” means.

To alleviate this confusion, I feel that it would be best to use a model where my interpre-

tation of autopoiesis can be made explicit and precise. In doing so, the above problems can

be made more concrete and tractable.

1.3. Modelling and Formalisation

Using a modelling approach allows us not only to address theoretical questions in concrete

terms (Beer, 2020d), but also o昀昀ers a way of developing the theoretical and technical tools

needed for a mature mathematical theory with predictive power (Beer, Barwich, & Sev-

erino, 2024). Thus, if autopoiesis is to fully realise its potential, modelling should 昀椀gure as

a key part in its development.
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Fortunately, there is a rich history of modelling autopoiesis, and biological organisation

more generally. For my purposes here, it will be useful to split these models into two

classes: spatial and non-spatial. Non-spatial models have the advantage of being easier to

analyse and to achieve rigorous results with. Moreover, such models are prevalent across

systems biology, including whole-cell models (Alon, 2019; Karr et al., 2012; Sun et al.,

2021).

However, with respect to questions concerning emergent biological identity, non-spatial

models are unsatisfactory. For instance, organisation is almost always non-emergent in

these models, but instead is speci昀椀ed by the observer. Most often, this is in the form a

system of ordinary di昀昀erential equations (ODEs) describing the organisation as an auto-

catalytic network of reactions (Barandiaran & Egbert, 2014; Bourgine & Stewart, 2004;

McSha昀昀rey & Beer, 2023). More obviously, these models lack a physical spatial boundary

that the system produces to distinguish itself from the environment. In some cases, there

is no physical boundary at all (Fontana & Buss, 1994), or the boundary is assumed as an

implicit condition for the autocatalytic network to exist (Barandiaran & Egbert, 2014; Mc-

Sha昀昀rey & Beer, 2023), or else it is imposed on the system by the observer (Bourgine &

Stewart, 2004). The predetermination of the organisation by the observer also means that

the organisation cannot, strictly speaking, disintegrate. Thus, to investigate viability in

these models, the constraint delimiting the space of viable states is imposed on the system

by the observer, often as bounds on the essential variables (Ashby, 1960).

Spatial models, on the other hand, more readily exhibit a diverse space of phenomena,

including the emergence of biological identity. However, what one gains in complexity, one

loses in the ability to attain rigorous mathematical results, often having to compensate

with many computational simulations of very select situations (Agmon et al., 2016; Egbert

& Di Paolo, 2009; McMullin, 2004; Ono & Ikegami, 2000; Varela et al., 1974). More impor-

tantly, analyses of these models have never properly de昀椀ned the organisation of a system,

despite such being properly emergent. That is, the network of processes that constitutes

an individual is never speci昀椀ed beyond the underlying chemistry that itself need not give
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rise to an emergent identity. In other words, there is no theory of biological organisation

developed for these models.

Despite these shortcomings, it is clear that a spatial model is ultimately necessary to

properly develop a theory of autopoiesis that captures all of the relevant features (i.e., the

emergence of organisation and the production of a physical boundary). The main challenge,

then, is to determine what a mathematical theory of autopoiesis should look like in these

models. To start, we can list some desiderata that such a theory should satisfy (at least

with respect to the core problems discussed above: cognition and viability). It should pre-

cisely de昀椀ne what a process is. It should explicitly de昀椀ne and represent the organisation

of an individual; we should have a concrete mathematical object describing the autopoietic

organisation of a system independent of any realisation of it. From this organisation, we

should be able to derive the complete space of behaviour possible for the system. Finally, we

should be able to derive the complete space of environments that destroy the organisation,

and the complete space of environments that do not.

There is one exception to the general trend of spatial models that does achieve this.

Beer has used the Game of Life (GoL) cellular automata (Adamatzky, 2010; Berlekamp et

al., 1982) as a simple universe in which a formal theory of autopoiesis has been developed

(Beer, 2004, 2014, 2015, 2020a, 2020b, 2020c; Beer, McSha昀昀rey, & Gaul, 2024). The GoL

universe is a discrete two-dimensional lattice of cells that can be either on or o昀昀 (Figure 1.4).

Every cell is updated simultaneously by taking the sum of the on-cells in the immediate

neighbourhood of the cell, and using the following rule:

• If the cell is o昀昀 and the sum of on-cells in the neighbourhood is equal to 3, the cell

will turn on; otherwise, it will stay o昀昀.

• If the cell is on and the sum of on-cells in the neighbourhood is greater than 2 and

less than 3, the cell will stay on; otherwise, the cell will turn o昀昀.

This simple rule gives rise to a surprising diversity of persistent emergent patterns,

such as blocks, blinkers, and gliders (Figure 1.4), which fall into the more general classes
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Figure 1.4: A snapshot of a GoL universe simulation. Black cells are on-cells, white cells
are o昀昀. In orange is boxed a glider. in Blue us boxed a block. In red is boxed a blinker.

of still-lifes, oscillators, and spaceships, respectively.

In order to use GoL as a useful tool for developing autopoietic theory, Beer (2015) inter-

preted this update rule as a physics, which in turn gives rise to a chemistry. Speci昀椀cally, a

cell and all the cells in its neighbourhood can be interpreted as reactants that, through the

update rule, produce a product: the updated cell (Figure 1.5a). The on- and o昀昀-cells of GoL

then become simple molecules, called 0- and 1-components. A process is simply de昀椀ned

by a speci昀椀c neighbourhood of components and the product they produce (Figure 1.5a).

Depending on the center-component and the product, a process can classi昀椀ed into one of

four classes: 1-maintenance (1 → 1), 0-maintenance (0 → 0), destruction (1 → 0), and

production (0 → 1).

This chemistry itself gives rise to the emergent individuals mentioned above. However,

to interpret them in autopoietic terms, they must have some kind of boundary separating

them as an individual from the environment. To resolve this, Beer (2004) interprets the

0-components immediately surrounding the 1-components of a pattern as its boundary.

For example, the glider is characterised by a speci昀椀c pattern of 昀椀ve 1-components (Fig-
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(a) (b) (c)

Figure 1.5: Beer’s2020b process notation. (a) Four classes of processes. Light gray cells
are 0-components, dark gray cells are 1-components. A black center-cell represents a 1-
maintenance process; white a 0-maintenance process; red a destruction process; and blue
a production process. (b) Partial processes. Yellow cells are unspeci昀椀ed components. A
half-red half-black center-cell indicates a partial 1-maintenance/destruction process. If the
sum of 1-components in the unspeci昀椀ed cells is 0 or 1, the process becomes 1-maintenance;
otherwise, it becomes a destruction. A half-blue half-white center-cell indicates a partial
0-maintenance/production process. If the sum of 1-components in the unspeci昀椀ed cells is
1, the process becomes a production; otherwise, it becomes 0-maintenance. (c) Process
dependency in GoL. The production process enables the 0-maintenance process because
its product becomes a reactant at the next time step. The brown arrow indicates what role
the product plays in the enabled process. (Figures (a) and (b) are adapted from Figure 2 of
Beer (2020b, p. 204))
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(a) (b) (c)

Figure 1.6: Glider con昀椀gurations. Black cells are on, gray cells are o昀昀. (a) A glider con昀椀g-
uration in a random environment. (b) A glider con昀椀guration with a boundary. Brown and
beige cells are 1-components and 0-components, respectively, that belong to the organisa-
tion of the glider. (c) The (1,2)-environment of a glider. Blue cells are part of the glider’s
1-environment; orange cells are part of the glider’s 2-environment.

ure 1.6a). Taking all of the components in the neighbourhood of the pattern as part of the

individual distinguishes it from the environment by isolating the internal 1-components

from any external in昀氀uence (Figure 1.6b). Thus, the boundary mediates all interaction

with the surrounding milieu, while participating as reactants in the processes centered

on the 1-components – the boundary both distinguishes the system as a unity and enables

its continued maintenance. This separation also gives rise to a further structuring of the

environment according to the speed at which in昀氀uences can travel to the individual. Beer

(2014) calls the components immediately surrounding the glider the 1-environment, the

components immediately surrounding these the 2-environment, and so on (Figure 1.6c).

To formulate the autopoietic organisation of emergent individuals, Beer (2015) uses

process dependency networks that describe all of the enabling relations between the pro-

cesses centered on each component of the individual. One process enables another when

the product of the 昀椀rst acts as a reactant in the other (Figure 1.5c). However, to account for

the contingency of organisations embedded in environments, the notion of a partial process

must be introduced (Beer, 2020b; Figure 1.5b). A partial process is one where at least one

of the reactants are unspeci昀椀ed, indicated by a yellow cell. These processes can then be re-

alised in more than one way, with each realisation resulting in a fully-determined process

(Figure 1.5a). Moreover, depending on the number of 1-components among the unspeci昀椀ed
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(a) (b)

Figure 1.7: (a) The process dependency graph of a glider. (b) The interaction graph of
a glider. The colored edges represent di昀昀erent transitions between glider con昀椀gurations.
Two edges have the same color of the transitions are symmetric. (These 昀椀gures are repro-
ductions of Figures 2 and 5c from Beer, McSha昀昀rey, and Gaul (2024, p. 25, 28))

reactants of a process, the product may change (Figure 1.5b). In the context of an organi-

sation, an unspeci昀椀ed component corresponds to the 1-environment of the individual.

Using this formalism, the autopoietic organisation of an emergent individual can be

explicitly represented as a graph of processes and enabling relations (Figure 1.7a; Beer,

2020b). From this graph, one can derive (using an algorithm I implemented: Beer, Mc-

Sha昀昀rey, and Gaul, 2024) an interaction graph describing all the possible interactions an

individual can engage in (Figure 1.7b; Beer, 2020b; Beer, McSha昀昀rey, and Gaul, 2024),

which can be veri昀椀ed by exhaustive computation (Beer, 2014). From an interaction graph,

one can then partition the space of environments in which the organisation of an individual

will exist, or will disintegrate (Figure 1.8). This constitutes the intrinsic viability constraint

of an individual, in contrast to the extrinsic constraints in previous models, since the con-

straint is derived from considering how the organisation is embedded in space, instead of

being imposed on the system by the observer as limits to essential variables.

The extrinsic-intrinsic distinction gives rise to a few interesting di昀昀erences. First, the
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Figure 1.8: The intrinsic viability constraint of a glider. int(V) contains glider (1,2)-
environments that preserve the organisation (a glider will exist at the next time step).�V contains (1,2)-environments that destroy the organisation. V contains con昀椀gurations
with no glider. (This 昀椀gure is adapted from Figure 6 in Beer, McSha昀昀rey, and Gaul (2024,
p. 29))
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information needed to determine the intrinsic constraint includes components in the 2-

environment – components that are outside the immediate range of in昀氀uence of the indi-

vidual. Thus, in general, an autopoietic system cannot distinguish between environments

in the boundary and in the interior of the constraint when those environments di昀昀er only

by the 2-environment. Second, the essential variables of an individual may include envi-

ronmental components, for the same reason. Third, the intrinsic constraint captures all

possible behaviour. This contrasts with previous models where behavioural mechanisms

were treated as something additional that did not modify the constraint (Barandiaran &

Egbert, 2014). Fourth, there are no con昀椀gurations in the boundary that return to the in-

terior, since the con昀椀gurations in the boundary, by de昀椀nition, destroy the organisation.

Beer’s work has shown that the main claims of autopoietic theory – the implication

of a cognitive domain and the viability constraint from the organisation – hold true in

the GoL universe. Moreover, the interpretation of autopoiesis formalised here involves es-

sential physical boundaries and an inherent spatiality, both in the underlying chemistry

and in the organisation it gives rise to. The formalisation of viability in GoL also chal-

lenges the concept of adaptivity and its dependence on “sensing the limits of viability.” For

instance, consider the intrinsic viability constraint of the glider (Figure 1.8). The glider

cannot change its behaviour with respect to the viability constraint, since any such change

would already be accounted for: the glider cannot alter a terminal trajectory. But even if we

permitted such changes, the glider will not, in general, be able to determine whether it is

on a terminal trajectory, since the information needed would be outside the 1-environment.

Thus, adaptivity would appear to depend on the extrinsic formulation of viability, and a

version of it that permits the modi昀椀cation of behaviour independent of the constraint.

***

A natural extension of Beer’s work is to step toward a theory of autopoiesis in a uni-

verse more like our own, with continuous space, continuous time, thermodynamics, etc.
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Figure 1.9: Snapshot of an LtL universe (under Bosco’s rule: Evans, 2001). Black-cells are
o昀昀, white-cells are on. In orange is boxed a bug. In red is boxed a blinker. In blue is boxed
a block.

However, a more reasonable approach would be to choose one of these aspects and develop

an extension of the theory there. Fortunately, there already exists rigorous results that

connect GoL to a continuous space, discrete time universe. Speci昀椀cally, Larger than Life

(LtL) is a generalisation of GoL to arbitrarily large neighbourhoods that exhibits many sim-

ilar emergent patterns (Figure 1.9; Evans, 1996, 2001, 2003, 2009) – GoL is an instance of

LtL. Pivato (2007) has proven that there exists a continuum limit of LtL, called RealLife, as

the neighbourhood size approaches in昀椀nity, by treating these larger neighbourhood rules

as increasing the resolution of an approximation.

The programme I pursue then proceeds as follows. First, I will extend the interpreta-

tion of autopoiesis to LtL, before extending the theory and derivations. Then I will do the

same for RealLife and establish a limiting connection between the discrete and continuous

de昀椀nitions of autopoiesis. I also present additional results, not present in the GoL work,

for computing LtL/RealLife rules from an organisation. Finally, in the discussion chapter

I interrogate what these results have to say about the challenge to adaptivity presented in

Beer, McSha昀昀rey, and Gaul (2024).
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The next two chapters present the following results: (i) the proper object to describe au-

topoiesis in LtL is an edge-decorated digraph; (ii) some graphs in LtL demonstrate unique

properties not observed in Beer’s work on the glider; (iii) graphs in LtL converge to edge-

decorated graphons in RealLife; (iv) interaction graphs can be derived algorithmically in

both LtL and RealLife; (v) intrinsic viability constraints can be derived algorithmically in

both LtL and RealLife; (vi) a set of rules that support the realisation of an organisation

can be derived and, under certain conditions, this derivation is exhaustive; (vii) Beer’s

interpretation of autopoiesis holds in both LtL and RealLife; and (viii) the challenge to

adaptivity holds in both LtL and RealLife.

In the 昀椀nal chapter, I discuss the signi昀椀cance these results have for our understanding

of biological identity, cognition, and viability, and further pursue the implications the in-

trinsic formulation of viability has for adaptivity. I then sketch an alternative perspective

to operationalise many of the explanatory targets of adaptivity. I end by considering future

directions to this work and their potential applications.
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Autopoiesis in Larger than Life

This chapter develops a formal framework for analysing autopoiesis in families of Larger

than Life (LtL) cellular automata (CA). First, I will de昀椀ne LtL and note some of the features

that make it interesting and worth using as a model of emergent individuals. Next, I

will broadly explain how persistent spatio-temporal patterns in LtL can be interpreted in

autopoietic terms, before formulating this interpretation in a mathematical framework,

illustrated with a few examples. The following sections extrapolate the consequences of

this de昀椀nition, 昀椀rst with respect to the cognitive domain of emergent individuals, and then

with respect to the conditions of survival for those individuals. Rigorous de昀椀nitions can be

found in Appendix A.1.

2.1. Larger than Life

LtL is a family of two-dimensional outer-totalistic cellular automata (Evans, 2001, 2003)

generalising the famous Game of Life (GoL) (Berlekamp et al., 1982). ‘Outer totalistic’
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means that the rules governing how a given cell updates is determined by both the cur-

rent state of the cell (outer) and the sum of the cells in its neighbourhood (totalistic). The

neighbourhood of a cell consists of all the sites within the (2� + 1) × (2� + 1) box centred

at the cell: the generalized Moore neighbourhood. All LtL rules share a basic form: if the

cell is o昀昀 and the sum over the neighbourhood falls within a contiguous birth interval, the

cell will turn on; if the cell is on and the sum falls within a contiguous survival interval,

the cell will stay on. If the sum does not fall into the interval, the cell will stay o昀昀 or turn

o昀昀, depending on whether the cell was o昀昀 or on, respectively.

Formally, we denote the set of cell states M ∶= {0, 1}. The state of a universe is given

by a function u ∶ ℤ2 → M , assigning to each site on a two-dimensional lattice a value in M ;

I will notate the set of all these functions U ⊂ M ℤ2. We can de昀椀ne the neighbourhood of a

cell by N ∶= { � ∶ || �||� ≤ �, � ∈ ℤ2}, where || ⋅ ||� is the �-norm and � is the neighbourhood

radius; here, I will only consider neighbourhoods with � = ∞, i.e., the generalized Moore

neighbourhood.

For the update rule, I will use the average value over the neighbourhood instead of

the sum, which is equivalent to scaling the sum by a constant factor 1/|N |. Thus, we can

de昀椀ne a convolution kernel � to give us the density of on-cells in the neighbourhood of a

point on the lattice �:

�( �) ∶= |N |−1
1N [ �] (2.1)� ∗ u(�) = |N |−1 ∑�∈N

u(� − �). (2.2)

We will often need to refer to the convolution � ∗ u (often calling it a density function) so

we will notate it more compactly as Ψ ∶= � ∗ u.

Finally, an LtL CA is an operator � ∶ U → U , speci昀椀ed by a birth interval [�0, �1] ⊆[0, 1] and survival interval [�0, �1] ⊆ [0, 1] such that

0 ≤ �0 ≤ �0 ≤ �1 ≤ �1 ≤ 1, (2.3)
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de昀椀ned by the following equation, where 1A is the indicator function of the set A :

�[u](�) ∶= u(�) ⋅ 1[�0, �1] [Ψ(�)] + (1 − u(�)) ⋅ 1[�0, �1] [Ψ(�)] . (2.4)

At each time step, the universe function updates according to �; thus, the time evolution

of an LtL universe is determined by recursing �; I will notate this recursion by �� for� time steps. LtL rules are usually speci昀椀ed by a 5-tuple (�, �0, �1, �0, �1), suppressing

dependence on the choice of �-norm. Hence, GoL is the rule (1, 39 , 39 , 39 , 49). As one last bit

of notation, we can express a spatial translation of a universe state as (��∘u)(�) ∶= u(�−�)
for all �, � ∈ ℤ2.

What makes LtL interesting for purposes of theoretical biology is the existence of emer-

gent, precarious, recurrent, compact spatio-temporal patterns (Beer, 2004; Evans, 2001,

2003; Gaul, 2024). These patterns fall into three main classes: still-lifes, oscillators, and

bugs (Evans, 2001). Still-lifes are patterns invariant with respect to �; they do not move

or change. Oscillators are patterns that cycle through some 昀椀nite number of con昀椀gura-

tions, where the smallest such cycle is the pattern’s period (they are periodic with respect

to �); still-lifes are a special case of oscillators with period 1. Finally, bugs are patterns

that move by a given non-zero translation vector over their period – they are periodic mod

spatial translation (note that these classi昀椀cations apply to patterns surrounded complete

with o昀昀-cells). We will be most interested in a particular sub-class of bugs – bugs with

stomachs (see Figure 2.2c) – composed of a connected region of o昀昀-cells surrounded by a

connected region of on-cells. These bugs are supported by a broader class of LtL rules, and

their scaling with respect to � is more interesting (they do not tend to an in昀椀nitely thin

con昀椀guration, for example; Evans, 2001).

More formally, a still-life is a universe state u such that �[u] = u; an oscillator is a

state such that � ̄�[u] = u for some 昀椀nite ̄� ≥ 1; and a bug is a state such that � ̄�[u] = ��∘u

for some 昀椀nite ̄� ≥ 1 and non-zero ⃗� ∈ ℤ2 (Evans, 2003).

These patterns are emergent since they are not speci昀椀ed by the rules and only result
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(a) Still-life (b) Oscillator

(c) Bug

Figure 2.1: Examples of the three main classes of persistent patterns in GoL. (a) A 2 × 2
block with period ̄� = 1. (b) A 3 × 1 blinker with period ̄� = 2. (c) A glider (diagonal bug)
with period ̄� = 4 and translation vector ⃗� = ⟨1, 1⟩.
as a consequence of local interactions between cells; they are precarious since they can

disintegrate when not surrounded by only o昀昀-cells; they are recurrent by being essentially

periodic; and they are compact since they consist of a 昀椀nite set of on-cells all connected via

neighbourhood relations. As examples, consider the 2 × 2 block, the 3 × 1 blinker, and the

glider of GoL (Figure 2.1). Analogous patterns also exist in other LtL rules with larger�. For instance, Bosco’s rule (5, 34121 , 45121 , 34121 , 58121) supports a generalization of the block,

blinker, and glider from GoL (Figure 2.2). To emphasize this biological perspective, I will

refer to these patterns as emergent individuals.

These patterns also appear to scale with larger �, approaching a smooth limiting object

(Figure 2.3). In fact, Evans (2003) has shown that (� + 1) × (� + 1) blocks and � × (� + 2)
blinkers can be scaled to arbitrary neighbourhood radii. However, no analogous proof yet

exists for bugs with stomachs, though empirical 昀椀ndings indicate that they should scale as

well. I will reserve a more in depth discussion of scaling for the end of this chapter and the

next, but one conceptual point should be made here: pattern scaling should be interpreted

as changing not the size but the resolution of patterns. Concretely, this would amount to

mapping ℤ2 into ℝ2 by a factor (� + 4)−2, 昀椀tting more lattice points into the same region

of ℝ2 as � increases. This also ensures that the dynamics remain local (the neighbourhood
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(a) Still-life (b) Oscillator

(c) Bug

Figure 2.2: Examples of the three main classes of persistent patterns supported by Bosco’s
rule. (a) A 6 × 6 block with period ̄� = 1. (b) A 7 × 5 blinker with period ̄� = 2. (c) A
disoriented bug with period ̄� = 4 and translation vector ⃗� = ⟨2, 1⟩.

Figure 2.3: Scaling of a translation-invariant bug for � = 5, 10, 20, 40. Every bug has
period ̄� = 1 and ⃗� = ⟨0, �⟩ for some �.

radius remains 昀椀nite in ℝ2).

2.2. Interpreting Autopoiesis

To motivate an interpretation of these persistent patterns as autopoietic systems – as some-

thing analogous to the living cells of our own universe – it will help to view the unfolding of

the LtL universe in chemical terms. First, we interpret on- and o昀昀-cells as distinct molec-

ular species; let us call them 1- and 0-components, respectively (Beer, 2004, 2015). The

update rule, then, describes an interaction between sets of these molecules: the spatial
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relations between reactant components determine a product component at the next time

step. Of course, this chemistry is very di昀昀erent from that of our universe (for example, a

single LtL component participates in multiple reaction simultaneously; components do not

persist longer than one time step before transformation, etc.) but the essential relation

between reactants and products still holds, and this is su昀케cient to ground the autopoietic

notion of a “process of production.” Moreover, the inherent spatiality in this chemistry

is very useful from a biological perspective, as we do not have to sacri昀椀ce the topological

structure of organisms when describing them as networks of processes.

To make this chemical interpretation more concrete, Beer (2015) developed a nota-

tion for processes in GoL, which I generalise here to LtL (Figure 2.4a). Every con昀椀gura-

tion of components in N determines a process; 0-components are notated in light grey, 1-

components in dark grey. These processes fall into four classes: 0-maintenance, production,

1-maintenance, and destruction. 0-maintenance processes, notated in white, occur when

the central component in N is a 0-component and the process produces a 0-component

(the cell is o昀昀 and stays o昀昀); production processes are notated in blue (the cell turns on);

1-maintenance processes in black (the cell stays on); and destruction processes in red (the

cell turns o昀昀).

It will be useful to have a notion of partially determined processes, which are equiv-

alence classes of processes that share the same con昀椀guration of components over some

subset of N (Figure 2.4b; Beer, 2020b). More intuitively, a partial process is one that

does not specify all the components in N , and therefore the type of process (whether 0-

maintenance, production, etc.) may be contingent on the state of those unspeci昀椀ed compo-

nents. I say may since LtL allows a partial process to be fully-determined with respect to

its type, i.e., when the state of the unspeci昀椀ed components has no bearing on the product of

the process. For instance, a GoL process with a central 0-component and 昀椀ve 1-components

will always be a 0-maintenance process irregardless of the state of any other components,

since the birth interval is [39 , 39]. I will still notate these processes as if they weren’t fully-

determined, since this has little bearing on the theory developed later (Section 2.3). All
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(a) (b)

Figure 2.4: Processes in LtL for � = 2. Dark grey cells represent 1-components (on-cells)
and light grey cells represent 0-components (o昀昀-cells). Every process contains (2� + 1)2
cells. Below each process is the state of the center cell and the product of the process.
(a) The four main classes of processes. 1-maintenance processes are notated with a black
center-cell; 0-maintenance processes have a white center-cell; destruction processes have a
red center-cell; and production processes have a blue center-cell. (b) The two main classes
of partial processes. Partial-0 processes are notated with a half-white, half-blue center-cell,
representing the possibility of being a 0-maintenance or production processes. Partial-1
processes are notated with a half-black, half-red center-cell, representing the possibility of
being a 1-maintenance or destruction process. Yellow cells have an unspeci昀椀ed state.
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partial processes encountered in autopoietic organisations will fall into two classes: par-

tial 0-maintenance/production or partial 1-maintenance/destruction. For shorthand, I will

call such processes partial-0 and partial-1 processes.

More formally, I de昀椀ne a process as an ordered pair � = (�,p), where � ⊆ N is the

domain of p ∈ U . The product of a process is given by �[p](0⃗), which is unde昀椀ned when� ≠ N . In other words, � is a partial process when the domain of p is smaller than N .

The density of a process is given by Ψ(0⃗) = (� ∗ p)(0⃗), which is also unde昀椀ned in partial

processes. However, it will be useful to treat this as a lower bound on density by assigning

p(�) = 0 for all � ∉ �.

It is important to note that I am making a clear distinction between the formalism of

a partial process and its meaning in the context of an organisation. In the formulation

presented in Beer (2020b) and Beer, McSha昀昀rey, and Gaul (2024), the unspeci昀椀ed compo-

nents were always interpreted as specifying the 1-environment. However, as we will see in

Section 2.3.1, this need not be the case under my formulation.

To begin moving from a strictly chemical perspective on the LtL universe to a biological

perspective, we need to formulate how processes depend on or enable one another, such that

relations of dependency or enablement can form networks. The formulation of processes

just described makes this straightforward: a process enables another when its product

serves as a reactant. More speci昀椀cally, a process at site �1 and time �1 enables another

process at site �2 and time �2 if and only if ||�2 − �1||� ≤ � and �2 = �1 + 1. The converse of

this is dependency: a process depends on another when one of its reactants is the product

of a preceding process. It will also be important to indicate how a process enables another

with respect to how its product participates in the enabled process (Figure 2.5). Thus,

the processes underlying an emergent individual form networks of enabling relations that

describe the production of the components that constitute that individual. Section 2.3 will

de昀椀ne these networks more explicitly.

We now have an intuition for how networks of processes of production can emerge in an

LtL universe. But we still need to understand how the notion of a topological boundary dis-
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Figure 2.5: Process dependencies in � = 1 universes. The black and grey grids are
toroidal universe states where black cells represent 1-components and grey cells repre-
sent 0-components; the one on the right is the state after updating the one on the left once.
The orange outlines are the set of cells that realise the process below the universe state.
The process on the left, labelled ��, is a production process; the one on the right, labelled��, is a 0-maintenance process. The brown arrow connects �� to the component it pro-
duces in ��, since the location of the center cell of �� aligns with that component after
application of �. This enabling relation is labelled ⟨−1,−1⟩, the location of the produced
component in ��.
tinguishing an emergent individual maps to LtL. In the canonical example of an autopoietic

system, the prokaryotic cell, this boundary is a semipermeable lipid bilayer that mediates

all interaction with the medium in which the cell exists and encloses its metabolism to

prevent di昀昀usion. Traditionally, what counts as a particular pattern in LtL is the spe-

ci昀椀c con昀椀guration of on-cells; thus the glider is identi昀椀ed with the on-cells in Figure 2.1c.

However, this makes the identi昀椀cation of a boundary impossible since the on-cells do not

enclose components. For the same reason, no subset of these components could be said to

mediate interaction with the surrounding medium. To remedy this, Beer (2004) interprets

the union of the neighbourhoods of the on-cells as components of the individual. This cre-

ates a connected ring of o昀昀-cells that fully contains the on-cells (Figure 2.6a). Note that

this insulates the on-cells from any in昀氀uence outside the boundary, since all components

in the neighbourhood of those cells are either part of the boundary or internal to it – the

boundary mediates all interaction with the environment. This union of neighbourhoods

interpretation also scales to larger neighbourhood rules (Figure 2.6b).

These components (the on-cells and their neighbourhoods) constitute the structure of
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(a) (b)

Figure 2.6: Structural realisations of two autopoietic systems. Brown and beige cells are
the 1- and 0-components, respectively that realise the individual. Black and grey cells are
environmental 1- and 0-components, respectively. (a) A glider (Figure 2.1c) wedge con昀椀gu-
ration in a � = 1 universe. (b) A bug (Figure 2.2c) con昀椀guration in � = 5 universes.

an individual. Formally, a structure is a pair (S , s), where S ⊂ ℤ2 is the set of compo-

nents that comprise the structure, and s ∈ U is a function describing the state of those

components. Picking out a structure also implies an environment in which the structure is

realised. It will be useful to partition the environment of an individual based what compo-

nents can in昀氀uence it. Thus, the 1-environment is the set of components whose neighbour-

hood intersects the structure. We will also need to reference the 2-environment as the set

of environmental components outside the 1-environment, but whose neighbourhood inter-

sects it. In general, we can refer to a set S and its �-environment by a function E�(S ).

Thus, any component in the �-environment of a structure will only be able to in昀氀uence the

processes in S after � time-steps.

Before proceeding to layout a formal theory in the following sections, some points

regarding how I am conceptualising “emergent individual” need to be made. Under the

framework employed here, an emergent individual is de昀椀ned by its autopoietic organisa-

tion, such that every realization of that organisation, in a given instance, is a 昀椀nite con昀椀g-

uration of components with a �-wide boundary of 0-components. This formulation implies

that in any sequence of con昀椀gurations, every process in one con昀椀guration is enabled by

a process in the preceding one. It is important to note these points since they reinforce
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that the identity of an emergent individual is logically determined by its autopoietic or-

ganisation. This raises an interesting practical question: how do we get the organisation

of an individual? In principle, one could randomly generate networks of processes (de昀椀ned

in Section 2.3) and determine if they are autopoietic (Section 2.4). Such an organisation

would uniquely determine a set of possible con昀椀gurations that realise the network. Of

course, this is impractical and does not re昀氀ect how we approach biological systems in our

universe. A more realistic scenario involves the derivation of an organisation from observed

sequences of bounded con昀椀gurations. However, such a derivation is not, in general, unique:

the observed sequences could always be considered a subset of the possible realisations of a

larger organisation (Example 7 makes this clearer). This non-uniqueness can be avoided if

we assume that the sequences we observe constitute all possible con昀椀gurations that realise

the organisation. One could also stipulate that all con昀椀gurations in the basin of attraction

of a given con昀椀guration are realisations of the organisation.

Again, I should emphasise that this is a practical problem. It concerns how we map

the theory of autopoiesis to empirical observations. It is up to the observer-community to

decide how best to apply autopoiesis to describe biological phenomena. All this should make

clear that what set of con昀椀gurations constitute the system is, to a certain extent, arbitrary.

For instance, consider a 6 × 6 block under Bosco’s rule (Figure 2.7). It can be perturbed to

produce two 1-components from the boundary. If this con昀椀guration is left unperturbed – a

“null” perturbation, or an environment of all 0-components – it will return to the original

block con昀椀guration. Should this intermediate con昀椀guration be considered an instance of

the same system? If so, should all such intermediate con昀椀gurations be treated the same?

What about longer sequences of con昀椀gurations? One could work out a list of well-motivated

answers to questions like these, but the point here is that such stipulations are arbitrary

with respect to autopoiesis; it does not matter which network we end up with, only that it

be autopoietic. For my purposes, I will only consider the sequence of instances realized in

a vacuum, and their symmetries. For example, the glider has two distinct con昀椀gurations,

the wedge and the rocket (昀椀rst and second frames of Figure 2.1c, respectively), each with
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Figure 2.7: A sequence of block con昀椀gurations in an environment. Arrows represent one
application of �. Environmental 1- and 0-components are represented by black and grey
cells, respectively. Brown and beige cells represent the 1- and 0-components, respectively,
that belong to the block. The leftmost con昀椀guration is perturbed by the environmental
1-components, resulting in the center con昀椀guration with two additional 1-components in
the block’s boundary. Another update results in the rightmost con昀椀guration, an ordinary
block in an empty environment.

eight unique symmetries by rotation and re昀氀ection. This does not mean that I am only

considering vacuum transitions, but just those structures that are observed in a vacuum.

Returning to our interpretation of autopoiesis in LtL more generally, any set of se-

quences of con昀椀gurations we stipulate must, taken together, form a closed network of

structural transitions: each con昀椀guration must, in at least one environment, transition

to another con昀椀guration in the set, and be transitioned to by some con昀椀guration. If such

closure is never observed, then the system will not be self-producing, since certain pro-

cesses that constitute the system depend entirely on processes outside the system (e.g.,

the 昀椀rst instance of a sequence). I will also require that every component that constitutes

an individual in one instance be enabled by a process in the preceding instance. This e昀昀ec-

tively constrains the possible transitions between structures to those where the structure

at � = 2 is within the light cone of the structure at � = 1: every component in the � = 2
structure is within � of some component in the � = 1 structure.

It should be noted that many aspects of this interpretation can be changed besides

the criteria for relevant con昀椀gurations just discussed. For example, one could require that

only some processes in a given instance need to be enabled by the preceding instance; con-

sider processes extending beyond the boundary as part of the autopoietic network; allow

boundaries to contain 1-components, etc. While some of these changes would fail to be
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accounted for in the theory presented below, this does not mean that they are necessarily

incorrect interpretations of autopoiesis, but that they would require a di昀昀erent mathemat-

ical framework. Thus, what I describe below is only one among many possible formulations

of autopoiesis in LtL.

2.3. Organisation

What should a mathematical formulation of autopoiesis look like? That is, what mathe-

matical object should be used to describe the organisation of an emergent individual? Most

obviously, it needs to be some kind of network whose basic elements are processes. It should

also be invariant with respect to changes in how processes are arranged or labelled within

the organisation (though this need not be the case for its realisation): only the processes

and their dependencies should matter. This means that the object should not explicitly

specify how the network is realised; for example, it should not specify which sets of pro-

cesses co-occur, except insofar as this is implied by dependency relations. Finally, the object

should permit the derivation of both the cognitive domain and all possible instantiations

of the system.

2.3.1. Process Dependency Graphs

The simplest way to satisfy these desiderata in LtL is with a graph. Following Beer (2015),

I de昀椀ne a process dependency graph as a digraph with processes as vertices and dependency

relations as edges pointing to components in the enabled process. More formally, a process

dependency graph is a multidigraph � = (�,�, �, �) (a directed graph permitting parallel

edges). Here, � (the vertex set) is an arbitrary 昀椀nite set representing processes. � (the

edge set) is a set of 3-tuples (�, �, �), where � ∈ N ×M 2. � ∶ (�, ⋅, ⋅) ↦ � maps edges to their

source vertex, and � ∶ (⋅, �, ⋅) ↦ � maps them to their target vertex.

Processes are not given explicitly in this de昀椀nition, and are instead implied by the edge

labellings in N ×M 2. To be more speci昀椀c, edges are triples of a source vertex � (an arbitrary
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element of �), target vertex �, and an enabling relation � = ( ⃗�, ��, ��) ∈ N ×M 2. ⃗� ∈ N is

the element of �� (where �� = (��,p�) is the process represented by �) of the component

produced by ��, and �� ∈ M is the state of that component; �� ∈ M is the state of the

center-component of ��. Each edge, then, speci昀椀es how the transformation of a component

participates in the organisation.

A process �� can be extracted from the graph by taking the set of edges {(⋅, �, ⋅) ∈ �},

where the state of the ⃗� component of ��, �, is given by � = ( ⃗�, ⋅, �). Additionally, the 0⃗
component �0 can be derived from any edge (�, ⋅, �) where � = (⋅, �0, ⋅).

I call this formulation of process dependency graphs edge-centric, in contrast to the

vertex-centric formulation present in Beer (2015, 2020b) and Beer, McSha昀昀rey, and Gaul

(2024). In the vertex-centric formulation, processes were represented explicitly as vertices

– there was no need to recover them from edge-labellings. This has consequences for the in-

terpretation of partial processes. In an edge-centric graph, every reactant of every process

must be either produced by another process, or be the center-component of an enabling

process. A vertex-centric graph, however, can specify reactants independent of whether

they are produced by any other process. Examples 4 and 10 below demonstrate the signif-

icance of this di昀昀erence clearly. I use an edge-centric formulation because it is necessary

to connect LtL to RealLife in the next chapter. The theory presented in this chapter, how-

ever, will still apply to a vertex-centric formulation and, in some cases, the theory is more

powerful there.

Now can we begin exploring the space of autopoietic process dependency graphs. Ex-

ample 1 is one of the simplest graphs possible in LtL.

Example 1: A � = 1 Block. Figure 2.8 depicts the organisation of a 2×2 block in

universes with � = 1 (Figure 2.1a). There are 4 1-maintenance processes and

12 partial-0 processes. There are a total of 100 edges.

Note that every speci昀椀ed component of a process in Figure 2.11a (grey and center cells)

is produced by another process in the network; that is, processes are only speci昀椀ed with

respect to their participation in autopoiesis. This is captured in the above de昀椀nition by the
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(a) (b)

Figure 2.8: The process dependency graphs of a � = 1 block. (a) Graph with every process
represented explicitly, and edges pointing to the enabled component. (b) A reduced repre-
sentation of the graph where the enabled component is not represented, and antiparallel
edges are reduced to undirected edges. Black circles represent 1-maintenance processes,
light blue circles partial-0 processes.

edge labels from N × M 2, where every edge speci昀椀es a component in the target process.

The unspeci昀椀ed components (yellow cells) in Figure 2.8a can only be determined when

the organisation is realized in space, since they depend on processes external to the au-

topoiesis of the block. In the block, partial processes correspond to the boundary, as they

mediate interaction with the environment.

Figure 2.8b shows a reduced representation of the process dependency graph in Fig-

ure 2.8a. Here, there is no indication of exactly how processes enable each other, only that

they do. This graph is also undirected, since all enabling relations are reciprocated in the

organisation.

Clearly, this de昀椀nition of process dependency graphs satis昀椀es the desiderata described

above. The processes in Figure 2.8a can be rearranged or labelled in any way, but the

graph will remain the same. It also does not specify a particular realization, except insofar

as each process speci昀椀es its own conditions for realization (the con昀椀guration of reactants in

the neighbourhood). Lastly, we can derive the cognitive domain and the system’s possible

instantiations, as will be shown in sections 2.4 and 2.5.



Autopoiesis in Larger than Life 39

(a) (b)

Figure 2.9: The process dependency graphs of a � = 3 block. (a) Graph with every process
represented explicitly, and edges pointing to the enabled component. Every process enables
itself, but these edges are not displayed in the shown graph. (b) A reduced representation
of the graph where the enabled component is not represented, and antiparallel edges are
reduced to undirected edges. Black circles represent 1-maintenance processes, light blue
circles partial-0 processes.

Example 2: A � = 3 Block. Figure 2.9 depicts the organisation of a 4 × 4 block

in � = 3 universes (Figure 2.2a). Out of 100 total vertices, there are 16 1-

maintenance processes and 84 partial-0 processes. There are a total of 3,364

edges. Every process in the graph enables itself.

The organization of larger � still-lifes is quite similar to the � = 1 block, but indicates

properties common to larger � individuals more generally. Consider the � = 3 block in

Example 2. Here, there are partial process whose reactants are mostly unspeci昀椀ed. This

implies that larger � individuals can generally survive more environmental con昀椀gurations.

It should also be evident that organisations in larger � universes are going to have increas-

ing large graphs due to both the number of processes involved and the number of reactants

in each one.

Example 3: A � = 5 Blinker. Figure 2.10a depicts the organisation of a �×(�+2)
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(a) (b)

Figure 2.10: (a) Process dependency graph of a � = 5 blinker. Black nodes are 1-
maintenance processes, red destruction processes, and light blue partial-0 processes.
Edges are directed. (b) A set of transitions for a � = 5 blinker. The black, orange, and
green rectangles represent the outlines of the subsequent blinker con昀椀gurations following
di昀昀erent perturbations to the initial con昀椀guration (the brown and beige cells). The solid
black outline is the transition that occurs when the environment is all 0-components (a
vacuum). The cyan-hatched cell corresponds to a 1-maintenance process in the initial con-
昀椀guration. The orange, black, and green circles correspond to the location of the same
process under the di昀昀erent perturbations of the corresponding color. Red-hatched cells
correspond to processes that don’t enable any process in the network.

blinker in � = 5 universes. Out of 510 total vertices, there are 50 1-maintenance

processes, 20 destruction processes, and 440 partial-0 processes. There are a

total of 116,910 edges. There are no self-enabling processes.

If we exclude all processes not in the closure and their associated edges, the

graph would have 410 vertices with 60 fewer partial-0 processes, and 108,810

edges. I call this subgraph the closure of the organisation.

Example 3 describes the organisation of a � = 5 blinker, an oscillator that demonstrates

interesting phenomena not present in the block. The most basic of these di昀昀erences is that

the reduced representation of the organisation is necessarily a directed graph because all

transitions of the blinker result in a structural change (a rotation), and thus a new set of
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processes is realised at every step. More generally, any individual with a period ̄� > 1 will

have this property.

The second interesting property is that there are some processes that do not enable any

others: they do not participate in the closure of the organisation. If we look at the transi-

tions of the blinker (Figure 2.10b), there are some components that never overlap with the

subsequent structure (the red hatched components). This means that the products of those

processes do not constitute the subsequent structure and thus cannot enable any process in

it. However, this still satis昀椀es the interpretation of autopoiesis described above: every pro-

cess in the network is enabled by some other process. The reason I include these processes

is that they are still implied by the closure of the organisation. That is, even if they are

pruned from the graph, one would recover them in the spatial embedding. Section 2.4 de-

scribes the details of this recovery, but the basic idea is that, since these processes are still

enabled by the network, all of the reactants that realize them still are produced. Thus, one

could just as well treat the closed network as the proper representation of the organisation.

The organisation is also a multidigraph: there is more than one edge in the same di-

rection between some pairs of vertices. This arises because there are structural transitions

that di昀昀er only by translation. Figure 2.10b shows the three transitions a vertical blinker

structure can undergo. The transition that occurs in a vacuum (black outline) results in

the subsequent structure centred on the initial structure. The other two non-vacuum tran-

sitions result in displacements of one cell in either direction horizontally (orange and green

outlines). By symmetry, the same set of transitions apply in the orthogonal direction. That

this results in a multigraph is clear if one considers 1-maintenance processes. Say a pro-

cess �� in the vertical blinker (cyan-hatched cell in Figure 2.10b) enables the ⟨0, 0⟩ com-

ponent of a process �� in the horizontal blinker under a null perturbation (black circle).

If a di昀昀erent perturbation causes the horizontal blinker to instead move right, then the

relative position of �� and �� changes (�� is now the green circle), which means �� would

enable the ⟨−1, 0⟩ component of ��. Thus, there is more than one edge from �� to �� in

the organisation.
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Blinkers are also the simplest class of individuals that shed and consume components.

That is, in any given structural transition, the blinker will produce components that do

not constitute the individual at the next step (e.g., the products of the red-hatched pro-

cesses in Figure 2.10b); conversely, it will be constituted by components produced by en-

vironmental processes (where the subsequent structure overlaps with the environment in

Figure 2.10b). In this way, autopoietic systems in LtL express a dependence on the environ-

ment to constantly renew themselves. More concretely, this means that not every process

will participate in any given transition.

Example 4: A � = 1 Blinker. Figure 2.11a depicts the organisation of a blinker in� = 1 universes. Out of 30 total vertices, there are 2 1-maintenance processes,

4 partial-1 processes, and 24 partial-0 processes. There are a total of 306 edges.

All processes are in the closure of the graph. The organisation is represented

as a multigraph, but results from a di昀昀erent set of transitions (Figure 2.11b)

than the � = 5 blinker. The organisation is equivalent to its closure. All circled

processes in Figure 2.11a have no edges pointing to their center-component.

Example 4 introduces processes whose center-components are always dependent on

environmental processes. This is in contrast to Example 3 where every center-component is

enabled by another process in the organisation in at least one transition. One consequence

of this is that there will be partial processes that do not correspond to the boundary of

the blinker, i.e, partial-1 processes. Thus, the meaning of an unspeci昀椀ed reactant becomes

more nuanced: where a reactant is unspeci昀椀ed, the enabling relation corresponding to its

production is external to the organisation. Put another way, an unspeci昀椀ed reactant means

either (i) the component realising that reactant is an environmental component, or (ii) the

process producing that reactant is not part of the organisation, or (iii) both. However, these

reactants can be fully-determined in the spatial embedding of the organisation when the

center-component of an adjacent process is known, which is true for all processes in the

organisation – in other words, the reactant can be determined when (ii), but not (i), is true.

(Section 2.4 will explain in more detail why this is the case.) Note again that this di昀昀ers
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(a) (b)

Figure 2.11: (a) Process dependency graph of a � = 1 blinker. The circled processes have no
edges pointing to their center-component. (b) A set of transitions for a � = 1 blinker. The
black, orange, and green outlines represent the bounds of the subsequent blinker con昀椀g-
uration following di昀昀erent perturbations to the initial con昀椀guration (the brown and beige
cells). The black outline corresponds to the transition that occurs when the initial con昀椀g-
uration undergoes a null-perturbation.

from the interpretation of partial processes used in Beer’s work. There, an unspeci昀椀ed

reactant meant only that the reactant, when realised, constitutes the 1-environment of

the system. In contrast, an unspeci昀椀ed reactant here implies that there is no edge in the

graph pointing to it.

Example 4 brings attention to another important aspect of the formalisation of pro-

cess dependency graphs described above. Speci昀椀cally, the edge labels need to specify the

center-component of the source process precisely because there are processes that are never

enabled in that way. This blinker also demonstrates that what components are shed in a

given transition need not be restricted to the products of boundary processes. For exam-

ple, the center-most process of the blinker in Figure 2.11b (a 1-maintenance process), only

produces a component that constitutes the blinker in one transition (the black outline). In

the other two transitions (orange and green) the product of that process becomes part of

the blinker’s environment.

Example 5: A ̄� = 4 � = 5 Bug. Figure 2.12 depicts the organisation of a ̄� disori-
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Figure 2.12: Process dependency graph of a � = 5 4-cycle disoriented bug. Black nodes are
1-maintenance processes, white nodes are 0-maintenance processes, red nodes are destruc-
tion processes, blue nodes are production processes, pink nodes are partial-1 processes, and
light blue nodes are partial-0 processes. Edges are directed.

ented bug in � = 5 universes (Figure 2.2c). Out of 1,539 total vertices, there

are 50 0-maintenance processes, 197 1-maintenance processes, 8 production

processes, 31 destruction processes, 23 partial-1 processes, and 1,230 partial-0

processes. There are a total of 137,323 edges. The closure of the graph has 1486

vertices and 134,292 edges, with 53 fewer partial-0 processes.

For any given process, there is at most one edge labelled with any given ⃗� ∈ N .

Such an organisation is called a reversible organisation.

Example 5 is the 昀椀rst non-still life reversible organisation described so far – an organ-

isation in which every component of every process has only one edge pointing to it. This

arises because the realisations of the organisation are restricted to the sequence of con-

昀椀gurations in Figure 2.2c. This implies the existence of 7 other symmetric organisations

by rotation and re昀氀ection of the structures. This points to a limitation of assuming only

vacuum structures and their symmetries: as � increases, there are more processes isolated

from the environment and thus less 昀氀exibility in how the morphology of a bug can change.
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Looking to the “stomach” of the bug in Figure 2.2c, all of those processes and the ones

immediately surrounding are fully-determined. It is therefore impossible for the morphol-

ogy of the stomach to change to something other than the next one in the shown sequence.

Any non-reversible generalisation of Example 5, then, must include sequences in which the

stomach of a con昀椀guration can only change after at least two time-steps by 昀椀rst changing

the state of the surrounding partial processes.

Example 6: A Translation-Invariant � = 5 Bug. Figure 2.13 depicts the re-

versible organisation of a translation invariant bug in � = 5 universes with a

translation vector ⃗� = ⟨0, 1⟩ (Figure 2.3, 昀椀rst frame). Out of 343 vertices, 17

are 1-maintenance processes, 18 are 0-maintenance processes, 5 are production

processes, 14 are destruction processes, 9 are partial-1 processes, and 280 are

partial-0 processes. All processes are self-enabling, except for 19 partial-0 pro-

cesses. There are a total of 29,493 edges. The closure of the graph has 324

vertices and 28,419 edges, with 19 fewer partial-0 processes.

Translation-invariant bugs, such as Example 6, are bugs that move without any mod-

i昀椀cation to their structure. In Evans’(2003) formalism, they are functions u ∈ U such

that �[u] = � ⃗� ∘ u for some ⃗� ∈ ℤ2. These bugs are interesting for us primarily because

they are the subclass of bugs whose scaling has been investigated most thoroughly (Evans,

2003), while still exhibiting non-trivial morphologies (i.e., non-rectangular). Thus, they

will serve as the most complex example in scaling organisations to RealLife in Chapter 3.

Example 7: The Glider. Figure 2.14 depicts the organisation of the glider (a � = 1
diagonal bug; previously computed in Beer, McSha昀昀rey, and Gaul, 2024). Out

of 352 total vertices, there are 16 0-maintenance processes, 48 1-maintenance

processes, 32 destruction processes, and 256 partial-0 processes. There are a

total of 5,912 edges. There are no self-enabling processes. The closure of the

graph has 320 vertices and 5,608 edges, with 32 fewer partial-0 processes.

The glider is the most well-studied individual in LtL (Beer, 2004, 2014, 2015, 2020a,
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Figure 2.13: Process dependency graph of a � = 5 translation invariant bug. Black nodes
are 1-maintenance processes, white nodes are 0-maintenance processes, red nodes are de-
struction processes, blue nodes are production processes, pink nodes are partial-1 pro-
cesses, and light blue nodes are partial-0 processes. Edges are directed.
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Figure 2.14: Process dependency graph of a the glider (Example 7). The two circled pro-
cesses are chemically-equivalent (are described by the same (�,p)). (This 昀椀gure is a re-
production of Figure 2 from Beer, McSha昀昀rey, and Gaul (2024, p. 25))
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2020b, 2020c; Beer, McSha昀昀rey, & Gaul, 2024). It is the simplest autopoietic system that

exhibits movement, but also possesses the most complex cognitive domain of any individual

discussed so far (Figure 2.19c). Thus, I will use it as the main example in Section 2.4 when

deriving the cognitive domain, especially as it is easier to visualise than the other bugs.

The glider also makes clear two interesting properties. First, its organisation contains

four symmetric reversible organisations. Looking at Figure 2.19c, these subgraphs de-

scribe the four 4-cycles with black and gray edges. This contrasts with Example 5, where

the symmetries do not form a larger organisation.

It also brings out most clearly a point discussed in Section 2.2: the non-uniqueness

of observation in determining an organisation. For example, if we only observe one of

the glider’s 4-cycles, we could adequately describe its organisation by the corresponding

subgraph of Example 7. However, those observations could just as well 昀椀t with the full

organisation, where only a subset of the its possible realisations are ever observed. Thus,

how one decides to relate observations to organisation will depend on how exhaustive one

takes their observations to be, and precisely how limited sets of observations are related to

the (potentially) broader space of an individuals interactions and structural realisations.

Here, I take observations to be exhaustive of structural realisations up to rotational and

re昀氀ectional symmetries, and then derive all possible transitions among those structures

(under a given LtL rule) to determine the full space of an individual’s interactions.

The glider also makes clear that apparently identical processes can be distinct with

respect to organisation. For example, consider the two circled processes in Figure 2.14.

Both are described by the same (�,p), but are distinguished by how they participate in

the organisation – what processes they enable and depend on – and thus they correspond

to di昀昀erent labels in �. I call these processes chemically equivalent, but organisationally

distinct.
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2.4. The Cognitive Domain

In the previous section, I made frequent reference to the structural transitions and spatial

embeddings of an organisation, without any explanation regarding precisely how these are

all related. This section 昀椀lls that gap by showing how an interaction graph – a network

describing the possible transitions between an organisation’s spatial realisations – can be

derived from an organisation without any additional assumptions.

Before proceeding to the derivation procedure, we will need to be more precise about

what an interaction graph should look like. As Beer (2020a) shows, there are many possible

formulations of the interaction graph, depending on how structural symmetries (transla-

tion, rotation, and re昀氀ection) are treated. However, we can begin narrowing the space of

formulations by considering the desiderata we would want such a formulation to satisfy.

First, it would be useful if, given an initial spatial embedding of the organisation and a

perturbation, the interaction graph uniquely determines the subsequent structure and its

spatial embedding. An interaction graph that, for example, only speci昀椀ed transitions be-

tween a glider’s rocket and wedge structures would therefore not satisfy this criterion, as

it could not distinguish between perturbations that resulted in di昀昀erent symmetries and

spatial embeddings of those structures.

We will also want interaction graphs to abstract over translational symmetries – oth-

erwise identical rocket con昀椀gurations should not be treated as distinct realisations of the

glider based on their position in space. Thus, an interaction graph should only specify rel-

ative translation between structures. This also means that the spatial embeddings derived

from an organisation should not specify the absolute position of any process in space, but

rather how processes are positioned relative to each other.

Finally, an interaction graph should group perturbations that result in an identical

transition between pairs of structures. This is to emphasise the perspective of the indi-

vidual over that of the observer, since the di昀昀erences between such perturbations are not

relevant to the persistence of the organisation. Such groupings are called perturbation
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classes.

Other desiderata could be speci昀椀ed, but any formalisation that satis昀椀es the above

should only di昀昀er in how useful they are practically. For instance, one could separate dif-

ferent symmetries of a structure into distinct vertices of the interaction graph, or encode

di昀昀erent transformations (re昀氀ection, rotation, etc.) into edges between a smaller set of

structures. I will take the former approach, whereby every edge in the interaction graph is

a unique structure up to translation, and edges encode relative translation between pairs

of structures.

More formally, I de昀椀ne an interaction graph I as an edge-decorated multidigraph(S, T , �, �, �), where S is a set of structures � = (S , s), T is a set of transitions (��, ��, �⃗),� ∶ (��, ⋅, ⋅) ↦ �� is a map from edges to the source vertex, � ∶ (⋅, ��, ⋅) ↦ �� is a map from

edges to the target vertex, and � ∶ T → C is a map that labels edges with elements from an

arbitrary 昀椀nite set C representing the perturbation classes.

In order to derive an interaction graph from a process dependency graph, we need to

get a set of spatial embeddings that map processes to ℤ2. From these embeddings, we can

attain both the structures and the edges of the interaction graph.

The basic logic of this derivation is grounded in the spatiality of enabling relations and

the LtL chemistry. For example, consider again Figure 2.5. Here, the spatial displacement

of sequential processes implies a speci昀椀c enabling relation between those processes. But

this logic also works in reverse: a given enabling relation implies a relative spatial dis-

placement. We can therefore take the set of edges emanating from a given process and

derive a set of embedding fragments (Figure 2.15).

The procedure for deriving these partial embeddings is as follows (outlined in Fig-

ure 2.15). First, 昀椀nd the most frequently enabled reactant (the corresponding edges high-

lighted in magenta). Then, place the enabled processes in a (2� + 1) × (2� + 1) grid in

the spot corresponding to its spatial displacement from the enabling process (assumed to

be centered on the grid). Further processes can be added to the grid if two conditions are

satis昀椀ed: (i) the union of the process functions is well-de昀椀ned (Figure 2.16), and (ii) the
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(a) (b)

Figure 2.15: Steps in the extraction of embedding fragments from a single process. (a)
Separation of fragments. Brown edges are enabling relations as before, and magenta
edges are enabling relations that point to the most frequently pointed to component: edges(�, �, ( ⃗�′0, ��, ��)) where ⃗�′0 is the most frequent element of all ⃗� emanating from the central
process. The processes enabled by the magenta edge are separated into two fragments
(black boxes), and placed at − ⃗�′0. (b) Adding processes to a fragment. The process enabled
by the dotted edge can be added to the fragment at − ⃗�0 because it enables another process
by ⃗�1, and the process at ⃗�′0 enables the same by ⃗�′1, and ⃗�0 − ⃗�′0 = ⃗�1 − ⃗�′1.

candidate process being added enables the same process as another in the grid, and the

relative position of the processes in the grid is the same as the relative position of the re-

actants they enable. Finally, all remaining processes that have not been integrated into

a partial embedding can be added through the same procedure, except condition (ii) is ig-

nored.

The union of process functions is de昀椀ned by a set of processes {��} and a spatial em-

bedding � ∶ {��} → ℤ2:

S = ⋃� �� + � (��) (2.5)

s = ⋃� �� (��) ∘ p�, (2.6)

where s is well-de昀椀ned when no processes con昀氀ict over the intersection of their (translated)

domains. Figure 2.16 shows an example of how process embeddings specify a universe state

function.

Once partial embeddings have been extracted from every process in the organisation,

they can be merged by aligning identical processes (Figure 2.17). More speci昀椀cally, given
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Figure 2.16: Structure from process function agreement. On the left is a spatial embedding
of processes. In the middle is the union of the process functions from that embedding. The
black box corresponds to the box in the embedding, except each process is replaced by
its center-component. On the right is the union of functions expressed in the structure
notation, where unspeci昀椀ed components are removed.

Figure 2.17: Merging of embedding fragments. On the left are 2 process embeddings, where
each process is labelled by an index. The fragments contain the same process (labelled 5),
and are therefore merged. On the right is the merged embedding. Boxed in red are all the
processes that are shared by the fragments on the left.

the set of process labels � from the process dependency graph, if two partial embeddings

contain a process with the same label, all processes in one of the embeddings are shifted

so that the identically labelled processes have the same embeddings (� (��) = � ′(��)).

Then the two embeddings are combined, dropping any redundant processes. When no

two embeddings can be merged, the full spatial embeddings of the organisation have been

derived.

It is then a straightforward procedure to get the interaction graph I� = (S, T , �, �, �)
from the spatial embeddings {��} and the process dependency graph � = (�,�, �, �). The
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Figure 2.18: Matching edge labels from symmetry. On top is a transition described by the
edge �1 ∈ T , labelled ORANGE. On the bottom is another transition described by the edge�2 ∈ T . f is a transformation that rotates universe state functions by −�2 and then re昀氀ects
them across the vertical axis. Since f can be applied to both structures in �1 to get the
structures in �2, �2 is also labelled ORANGE (�(�1) = �(�2) = ORANGE).

structure set S can be attained by taking the union of the process functions for each em-

bedding – resulting in a set of structures � = (S , s) – and normalising them (centering

about 0⃗). The edge set T can be attained by 昀椀nding all unique pairs (�1, �2, �⃗) where ��
and �� are processes in �1 and �2, respectively, and (�, �, �) ∈ �, with � = (0⃗, ⋅, ⋅); each

such edge is then given by (�1, �2, �2(��) − �1(��)), which speci昀椀es a translation vector

between �1 and �2.

Deriving the perturbation class function � ∶ T → C is more involved. The basic idea

is to assign pairs of edges the same label in C if the same transformation (rotation and/or

re昀氀ection) can be applied to the source and target structure of one edge to get the other

(Figure 2.18). More speci昀椀cally, if �1 = (�1�, �1�, �⃗1) and �2 = (�2�, �2�, �⃗2) are edges in

T , then �(�1) = �(�2) when there exists some transformation f such that f ∘ s1� = s2� and

f ∘ (��⃗1 ∘ s1�) = ��⃗2 ∘ s2�.
The following examples will clarify aspects of the above de昀椀nitions and demonstrate

some of their consequences.

Example 8: The Glider. Figure 2.19a shows the spatial embeddings of the glider
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organisation (Example 7). Note that there are 16 distinct embeddings here, and

that their placement in the 昀椀gure is arbitrary: only the positions of processes

within an embedding is meaningful. What is meaningful between di昀昀erent em-

beddings, however, are the bundles of edges connecting them. Each of these bun-

dles describes the dependency relations involved in transitions between glider

structures. We can see this more clearly by labelling the edges according to the

symmetry consideration discussed above. Finally, we can replace each embed-

dings with the structure it implies (Figure 2.16) and collapse the bundles into

labelled edges between structures. This gives the interaction graph of the glider

(Figure 2.19c).

The interaction graph has 16 distinct spatial embeddings of the organisation,

realising two basic structures (wedge and rocket) with 8 symmetries each. There

are 48 edges divided into 6 non-destructive perturbation classes:

C = {BLUE, ORANGE, BROWN, BLACK, GRAY, GREEN} .
The BLACK and GRAY classes are equivalent to null-perturbations.

This interaction graph can be used to predict the glider’s response to any perturba-

tion. For example, all possible perturbations ((1,2)-environments) on a wedge structure

can be partitioned into 5 sets: BLUE, ORANGE, BROWN, BLACK, or destructive. Destructive per-

turbations destroy the glider organisation, while the other four result in some transition to

another structure. The edges of the graph will tell us how that subsequent structure is po-

sitioned relative to the initial wedge. — More generally, any observed transitions between

glider structures corresponds to a unique edge in the interaction graph.

Another useful property of the graph is that each basic structure (wedge and rocket) has

a unique set of perturbation classes that is preserved across all symmetries. This means

that, no matter how the glider is embedded in space, its internal state determines the space

of its possible behaviours. An important conceptual point here is that internal state is not
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(a) (b)

(c)

Figure 2.19: Interaction graph from the glider organisation. (a) The 16 spatial embeddings
of the glider organisation with edges retained. (b) The spatial embeddings with edges
labelled according to the interaction graph. (c) The interaction graph of the glider, with
6 perturbation classes in black, gray, blue, green, brown, and orange. (These 昀椀gures are
reproductions of Figures 4 5A and 5C from Beer, McSha昀昀rey, and Gaul (2024, pp. 27–28).)
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Figure 2.20: Glider structure from the closure of the glider organisation. On the left is one
of the 16 spatial embeddings of the closed glider organisation. The 0s boxed in red represent
processes with a 0 central-component. They are implied by the reactants pointing to them.
On the right is the structure attained by replacing each process with its central-component,
and replacing the boxed 0s with 0-components.

su昀케cient to specify how a system is structurally coupled to its environment. However, it

is su昀케cient to fully specify the e昀昀ects of all possible perturbations from the perspective of

the system. This is why the interaction graph contains both labelled perturbation classes

and distinguishes symmetric structures: to capture both the perspective of the system and

its possibilities for structural coupling. Relatedly, the interaction graph can be interpreted

as a nonautonomous dynamical system, where the state space is {glider,wedge}, and the

nonautonomous inputs are the perturbation classes.

The derivation process also works for the closure of the organisation. Figure 2.20 shows

how an embedding of the closed glider organisation still implies a proper structure (i.e.,

with a full boundary) despite missing two processes from the non-closed organisation. It

should be clear that, despite not representing the missing processes explicitly, they are

still implied in any realisation of the glider by the neighbouring processes – all processes

that satisfy the conditions implied by those neighbours fall into the equivalence class rep-

resented by the process in the non-closed organisation. This is what grounds the claim

made in Section 2.3.1 that a closed organisation is just as valid of a representation as the

non-closed form.

Example 9: A � = 5 Blinker. The interaction graph of the � = 5 blinker in

Example 3 (Figure 2.21b) has 2 distinct spatial embeddings of the organisation
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(a) (b)

Figure 2.21: (a) The 2 spatial embeddings derived from the � = 5 blinker organisation, with
edges retained. (b) The interaction graph derived from the � = 5 blinker organisation, with
3 perturbation classes in orange, green, and gray.

– horizontal and vertical – realising 1 basic structure with 2 unique symmetries.

There are 6 edges divided into 3 non-destructive perturbation classes:

C = {GRAY, ORANGE, GREEN} .
The GRAY class is equivalent to a null-perturbation. The interaction graph is a

multidigraph.

The reader should recall that the organisation of the � = 5 blinker was also a multi-

graph. This hints at a more general pattern: a dependency multigraph implies an inter-

action multigraph. In the organisation, parallel edges represented di昀昀erent enabling re-

lations, but in the interaction graph, parallel edges represent di昀昀erent translations of the

target structure relative to the source structure. The logic behind this is rather straight-

forward. First, every edge must correspond to one transition and every process to only

one structure. And since parallel edges cannot be realised simultaneously, there must be

more than one transition between the structures that the involved processes belong to –

the interaction graph must be a multigraph.

The blinker also makes even more explicit the distinction between internal state and

spatial embedding: the former is constant, whereas the latter varies by both the symmetry
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(a) (b)

Figure 2.22: (a) The 2 spatial embeddings of the reversible blinker organisation, with edges
retained. (b) The interaction graph derived from the reversible blinker organisation.

of the basic structure and the di昀昀erent relative translations in any given transition.

Example 10: A � = 1 Reversible Blinker. The reversible blinker organisation

contains processes that do not enable any other in the network, and have no

edges pointing to their center-component (e.g., the processes in Figure 2.22a

with an unspeci昀椀ed center-component). Such an organisation is degenerate

in the sense that the interaction graph derived from it does not contain well-

de昀椀ned structures (Figure 2.22b). This arises because the components that

would constitute the missing part of the boundary correspond to the problem-

atic processes in the organisation, and thus the organisation fails to specify that

those components should exist.

Unfortunately, the derivation procedure described above does not work in every case, as

Example 10 shows. Speci昀椀cally, there are degenerate cases where the organisation cannot

be used to derive a proper interaction graph. The degeneracy arises due to the existence

of processes that (i) enable no other processes in the organisation, and (ii) have no edges

pointing to their center-component. More formally a vertex � ∈ � corresponds to a degener-

ate process when there does not exist any edge with source vertex � nor any edge (⋅, �, �) ∈ �
with � = (0⃗, ⋅, ⋅). Reversible blinkers always have degenerate processes and are the only

class of systems described in this chapter that do.

The signi昀椀cance of this depends on many factors. For one, we need to consider whether
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this very narrow class of degenerate cases should be taken to have the same theoretical

weight as the more general case of bugs – are there any theoretical questions that blinkers

allows us to answer that bugs do not? At least for the questions posed here, the answer

to this is negative. Moreover, this degeneracy becomes less problematic, in a sense, for

larger � blinkers, as the proportion of degenerate processes in the organisation (and thus

proportion of missing components in the interaction graph) decreases with �. Moreover, it

is not as though there is no way to recover the missing components: we can guarantee that

a degenerate process is always a boundary process, and thus that its center-component

is 0. Equivalently, one could “昀椀ll in” the missing components of the structure after the

derivation to form a proper structure.

More fundamentally, though, this degeneracy is a consequence of the edge-decorations

chosen for the de昀椀nition of organisations and the special role that center-components play

in the chemistry. We can de昀椀ne organisations using an alternative formulation by re-

placing the vertex set of arbitrary labels with properly de昀椀ned processes. Then edge-

decorations would only need to specify elements of N , since the state of all reactants would

be given explicitly by the vertices (implicitly, this is the formulation used in Beer’s work

on GoL: Beer, 2015, 2020b; Beer, McSha昀昀rey, and Gaul, 2024). The reason I do not do this

here is that such a representation would fail to scale into RealLife, as will be made clear

in Chapter 3. Thus, the formalism presented here is a presented as part of a larger uni昀椀ed

theoretical framework combining LtL and RealLife.

Example 11: A � = 5 ̄� = 4 Bug. The interaction graph of the � = 5 ̄� = 4
bug in Example 5 (Figure 2.12) has 4 distinct spatial embeddings of the organ-

isation, none of which are symmetries of each other. There are 4 edges and 4

non-destructive perturbation classes: C = {GRAY, BROWN, YELLOW, GREEN}. Every

class equivalent to a null-perturbation.

Example 11 shows the spatial embedding and interaction graph of a reversible organ-

isation (Example 5). This interaction graph makes clear that every unique structure has

a unique set of perturbation classes, even if that set only ever has one element. This is
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(a) (b)

Figure 2.23: (a) The 4 spatial embeddings of the organisation in Example 5, with edges
retained and labelled according to the interaction graph.(b) The interaction graph derived
from the organisation in Example 5, with 4 perturbation classes labelled gray, brown, yel-
low, and green.

because perturbations can only be de昀椀ned with respect to a structure – the geometry of

a perturbation is contingent on the geometry of the structure it perturbs. Since every

structure in this interaction graph has a unique geometry, there cannot be any shared

perturbation classes. Moreover, perturbation classes must also be distinguished based on

the internal con昀椀guration of a structure, even if geometries are identical. For instance,

the glider’s wedge and rocket structures have the same geometry, but di昀昀er in the par-

ticular con昀椀guration of components within that geometry (Example 8). It is necessary to

distinguish perturbation classes here because the same perturbation may have di昀昀erent

consequences – a perturbation applied to a rocket may destroy the glider organisation, but

preserve it when applied to a wedge.

Just as there exist symmetric organisations in Example 5, there are symmetric in-

teraction graphs here, where the same transformation can be applied to every structure

of the graph, preserving the perturbation classes. There are a total of 8 such symmetric

interaction graphs.
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2.5. The Viability Constraint

Using this formalisation of autopoiesis and the cognitive domain, we can derive the set

of environments in which an autopoietic system will persist. We call such a set of agent-

environment con昀椀gurations the intrinsic viability constraint of the system (Beer, McShaf-

frey, & Gaul, 2024). More formally, what we want is a set V of con昀椀gurations that contain

a realisation of the organisation. We further want to 昀椀nd a subset �V ⊂ V in which every

con昀椀guration destroys the organisation.

In order to properly formulate the viability constraint, we need to determine whether

a given environment preserves the organisation of an autopoietic system. In general, this

will require us to consider a structure and its (1,2)-environment – a set of the form E2(S ).

The 1-environment is not su昀케cient when components of the system are produced by envi-

ronmental processes, since those processes have reactants in the 2-environment.

There are two equivalent formulations of the intrinsic viability constraint. One spec-

i昀椀es the conditions that universe state functions must satisfy with respect to the organi-

sation, while the other speci昀椀es the conditions that density functions must satisfy. I call

these the state formulation and the density formulation. (The former appeared in (Beer,

McSha昀昀rey, & Gaul, 2024), while the latter is novel.)

2.5.1. The State Formulation

The state formulation is quite simple. Given an autopoietic process dependency graph �
and its derived interaction graph I� = (S, T , �, �, �), V� is the set of functions over E2(S�)
that contain some structure in �� ∈ S. �V� is then the subset of V� where the updated

function does not contain any structure – the boundary of the viability constraint. All other

sets can then be de昀椀ned in terms of these two: the set of con昀椀gurations that do not contain

any realisation of the organisation is V�, and the set of con昀椀gurations that preserve the

organisation is int(V�) ∶= V�\�V�.

The following examples will illustrate this formulation more concretely.
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Figure 2.24: The intrinsic viability constraint of the � = 4 block. Orange indicates the
class of non-destructive (1,2)-environments, and red indicates the class of destructive (1,2)-
environments. The three con昀椀gurations in V are examples representing the kinds of con-
昀椀gurations in that set. The top one will contain a block after one update, and thus has
an arrow pointing to V. The middle con昀椀guration is one that results from updating some
member of �V. The bottom one is neither the result of updating a member of V, nor will
update into V.

Example 12: � = 4 Block. Figure 2.24 shows a schematic illustration of the

intrinsic viability constraint of a � = 4 block. There is 1 class of non-destructive

(1,2)-environments in int(V) and 1 class of destructive environments in �V. All

members of �V invariably update to some member of V. Some con昀椀gurations in

V will update to con昀椀gurations in V.

Still-lifes have the simplest possible viability constraints, with only two classes of (1,2)-

environments in V. However, this still captures most of the basic features common to all

viability constraints. First, there are restrictions on what set a given con昀椀guration can

transition to. Members of int(V) can only transition to other members of V, since they

by de昀椀nition must preserve the organisation after updating. Similarly, members of �V
always transition to members of V, by de昀椀nition. More interesting are the possibilities for

con昀椀gurations in V: it is possible to transition to any of the sets.

Still-lifes are unique, however, in only needing the 1-environment to determine the vi-

ability constraint, since no components produced by the environment ever constitute the
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(a) (b)

Figure 2.25: (a) The intrinsic viability constraint of the � = 5 blinker organisation. There
are 3 non-destructive classes, labelled green, gray, and orange. There is 1 destructive
class, labelled red. (b) Components relevant to the gray class. In black is outlined the
1-environment of the brown and beige blinker con昀椀guration. The blue cells correspond to
environmental processes that produce components that will constitute the blinker after
updating. The blue outline contains all components in the neighbourhood of the blue cells.
The orange cells are 2-environment components in the neighbourhood of the blue cells.

individual. Thus, the 2-environment is really unconstrained here, in that if any (1,2)-

environment con昀椀guration is in a given set, all con昀椀gurations that only di昀昀er by the 2-

environment will also be in that set.

Example 13: � = 5 Blinker. Figure 2.25a shows the intrinsic viability constraint

of a � = 5 blinker. There are 3 classes of non-destructive (1,2)-environments

and 1 class of destructive (1,2)-environments. The 2-environment is partially

constrained in every class.

Example 13 describes a viability constraint with more than one non-destructive class of

perturbations. Here the 1-environment is insu昀케cient to fully-determine the viability con-

straint: in any given transition, there are always components that constitute the blinker

that are produced by the environment. Since the neighbourhood of these processes inter-

sects with 2-environment, their product can only be determined (in general) by accounting

for the state of the 2-environment. However, this does not mean that every component of the
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2-environment is constrained, but that only those in the neighbourhood of a process that

produces components that constitute the blinker are constrained. For instance consider the

GRAY class of (1,2)-environments (Figure 2.25b). Here, the components colored in blue will

be transformed into the blinker boundary at the next step. Only the 1-environment and

the orange components are relevant to this structural transition – all other components of

the 2-environment can take any value.

It is worth noting that �V is not necessarily a boundary in the topological sense in

the space of functions over E2(S ). For one, Each unique S would imply its own space of

functions, which together need not have a connected union. More fundamentally, though, it

is the organisation that determines what sets of function constitute V, and this speci昀椀cation

is independent of the topology in which these functions are considered.

2.5.2. The Density Formulation

While the state formulation is simple and captures what we want theoretically, it is practi-

cally limited. For instance, if one wants to 昀椀nd a perturbation in a given class, there is no

obvious way to do this other than by searching the space of (1,2)-environments directly, or

by solving a system of constraint equations (Beer, 2014). However, this is very expensive

computationally. The density formulation simpli昀椀es this task by exchanging universe-state

functions over E2(S ) for density functions over E(S ). The main advantage here is that

we can de昀椀ne a metric for how far a density function is from being a member of a given

class. In fact, we can extend this more generally to determine how far a density function

is from being in a set of classes (e.g., in int(V) or �V).

The basic logic of the density formulation is grounded in results from Fourier analysis

(Oppenheim & Schafer, 2010, pp. 49–50, 60). Speci昀椀cally, a density function Ψ over some

set A ⊂ ℤ2 implies a unique u ∈ U over E(A ) such that Ψ = � ∗ u. This function can be

computed using the Discrete Time Fourier Transform (DTFT), notated here as F :

u = F−1 [F[Ψ]
F[�] ] . (2.7)
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Figure 2.26: Schematic of a structural transition. The blue outline represents the initial
con昀椀guration, and the red outline represents the con昀椀guration after updating. The black
outline represents the 1-environment of the blue con昀椀guration. The violet region is the
intersection of the red and blue con昀椀gurations; the dotted violet line is the 1-environment
of this region. The orange regions are the intersection of the red con昀椀guration with the
1-environment. The orange outlines are the 1-environments of the orange regions.

In order to derive V, we again consider each edge (��, ��, �⃗) ∈ T of the interaction

graph I. For each point in S� ∩ (S� + �⃗) (the violet region in Figure 2.26), we can specify

the bounds on the possible densities at those points such that �[s�] = ��⃗ ∘ s�, using the

following equation:

Γ[a,b](�) ∶=
⎧{{{{{{⎨{{{{{{⎩

[�0, �1] a(�) = 0 ∧ b(�) = 1[0, 1]\[�0, �1] a(�) = 0 ∧ b(�) = 0[�0, �1] a(�) = 1 ∧ b(�) = 1[0, 1]\[�0, �1] a(�) = 1 ∧ b(�) = 0.
(2.8)

Note that this function is only de昀椀ned when both a and b are known – we need a source

component and a target component. Thus, using Γ[s�, ��⃗∘s�], we get a set of density bounds

for every point � ∈ S� ∩ (S� + �⃗), which in turn implies a unique u over E(S� ∩ (S� + �⃗))
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(the violet outline in Figure 2.26) for every Ψ that satis昀椀es those bounds. However, this is

not quite enough to determine the viability constraint in general, since it can only de昀椀ne

at most the 1-environment by virtue of the density functions being constrained to some

intersection with S� (note how the dashed violet line is contained within the 1-environment

in Figure 2.26).

The solution to this problem lies in applying Γ to the 1-environment states just de-

rived. Before, we were missing source components for some of �� (the two orange regions

in Figure 2.26), but given a density function, these can be supplied. After applying Γ, we

get a family of density function over (S� + �⃗)\S� (the orange regions). Now, if any of these

density functions both satisfy Γ and are consistent with the density function used to derive

the source components, we get a unique universe state function for all relevant components

in the transition (union of the orange and violet outlines in Figure 2.26) – the transition(��, ��, �⃗) is guaranteed to occur under this function, irrespective of the values of any other

components in the (1,2)-environment.

The full viability constraint then becomes the set of valid density functions over each

S� + �⃗ (union of the orange and violet regions) for every edge of the interaction graph.

We can derive the state formulation of the viability constraint from this by replacing each

density function with the set of (1,2)-environments that contain the components speci昀椀ed

by that function.

To make this more concrete, I will derive a non-destructive perturbation for the organ-

isation in Example 6. The interaction graph for this organisation is shown in Figure 2.27a.

The edge in this graph has a translation vector �⃗ = ⟨0, 1⟩, which means Γ is de昀椀ned only

over the brown and beige components in Figure 2.27b, resulting in the density bounds in

Figure 2.27c. The density function in Figure 2.27d satis昀椀es these bounds. Applying Equa-

tion 2.7, we set every component in the green region of Figure 2.27b to 0, which allows

us to extend Γ over that region, assigning to each point [0, 1]\[�0, �1] (both the source

and target components are 0). These new bounds can be satis昀椀ed by setting the density

at each point to 0. Finally, we apply Equation 2.7 again to get a state function with all
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relevant components in the (1,2)-environment set to 0, which can be easily veri昀椀ed as a

viable non-destructive perturbation.

The most di昀케cult part in using this method to derive perturbations is 昀椀nding appro-

priate density functions. This is where the metric mentioned above becomes useful. We

de昀椀ne ��[Ψ](�) ∶= min{|Ψ(�) − �| ∶ � ∈ Γ[s�, ��⃗ ∘ s�](�)} , (2.9)

where � = (��, ��, �⃗) ∈ T is an edge from an interaction graph, and Ψ is assumed to imply�� under Equation 2.7. This gives the distance of how far a density function Ψ is from

satisfying the transition � at a given point �. We can also extend this to be a metric over all

transitions from a given structure ��:
�V[��,Ψ](�) ∶= min {��[Ψ](�) ∶ � = (��, ⋅, ⋅) ∈ T } . (2.10)

With this, the following procedure can be used to 昀椀nd appropriate density functions. First,

begin with a structure �� in a random (1,2)-environment and take the density function

from this. Then manipulate this function through a process minimising the metric until a

value of 0 is attained. Then for each possible transition satis昀椀ed by this density function,

use Equation 2.7 to extend Γ and repeat the minimisation process. This should result in a

valid density function, so long as the transition is possible at all (i.e., so long as Equation 2.7

returns a function in U ).

Example 14: � = 5 ̄� = 4 Bug. Figure 2.28 shows the intrinsic viability con-

straint of the � = 5 ̄� = 4 bug from Example 5. There are 4 classes of non-

destructive (1,2)-environments and 4 classes of destructive (1,2)-environments,

where each of the 4 unique structures has exactly one class in each region of the

viability constraint. The 2-environment is partially constrained in every class.

Returning to broader points about how viability constraints are de昀椀ned in this formal-

ism, consider Example 14. It is very clear to see how symmetries are treated: there are only
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(a) (b)

(c) (d)

Figure 2.27: Deriving a perturbation using the density formulation. (a) The interaction
graph derived from the organisation in Example 6. (b) Brown and beige cells correspond
to processes in the organisation that produce components in the structure. Red cells cor-
respond to processes in the organisation that do not produce components in the structure.
Green cells correspond to environmental processes that produce components in the struc-
ture. Orange cells correspond to environmental processes that do not produce components
in the structure. (c) The density bounds given by Γ. Blue bounds indicate that densities be-
low the satisfy Γ, and orange bounds indicates that densities above satisfy Γ. (d) A density
function that satis昀椀es the density bounds in Figure 2.27c. Lighter color indicates higher
density.
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Figure 2.28: The intrinsic viability constraint in Example 14. The 4 classes of destructive
(1,2)-environments in �V are colored in reds and pinks. The 4 classes of non-destructive
environments in int(V) are colored in gray, brown, yellow, and green.

4 unique structures, but none of their symmetries. Thus, a con昀椀guration symmetric to one

in the viability constraint does not realise the organisation. However, such a con昀椀guration

may realise a symmetric organisation. This raises a reasonable concern about whether

we should consider symmetric realisations as being of the same organisation. If we do,

then any process dependency graph with distinct symmetries must properly be de昀椀ned as

a single disconnected graph, where each connected subgraph is one of the symmetric organ-

isations. Similarly, the interaction graph would then also become a disconnected graph.

Now, the viability constraint would contain all possible realisations, including symmetries.

This formulation would add 56 new classes to Example 14, with 28 to int(V) and 28 to �V.

There are many ways that this formalisation of viability di昀昀ers from that presented

in the literature thus far. Most formulations of viability essentially follow Ashby (1960,

chap. 5), in which one considers some dynamical system and imposes constraints on its

state space such that states within the constraint are, by de昀椀nition, viable. The constrained

dimensions are the essential variables of the system. The most obvious di昀昀erence between
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this and the formulation above is where the constraint comes from: in one case, the con-

straints are given by the observer independent of the system considered, where as in the

other, the constraints are derived directly from the system itself. This is why I have used

the term intrinsic viability constraint, di昀昀erentiating this from the extrinsic constraints

a la Ashby (Ashby, 1960; Beer, McSha昀昀rey, & Gaul, 2024). A particularly salient conse-

quence of the intrinsic-extrinsic dichotomy is how, in the extrinsic case, the system still

exists in some sense, even if its state is outside the viability region. This di昀昀ers from in-

trinsic constraints, in which it does not make sense to talk about the state of an individual

when it is not realised.

Another basic di昀昀erence is that intrinsic constraints restrict on both the space of struc-

tures and structural transitions, whereas extrinsic constraints only restrict the states

(structures) of a system. Relatedly, the environment need not be considered in the extrin-

sic case unless introduced explicitly by the observer (for instance, by adding a behavioural

mechanism e昀昀ecting the essential variables (Barandiaran & Egbert, 2014; McSha昀昀rey &

Beer, 2023), or by making the system nonautonomous (Aubin, 1991)). Moreover, even in

the case of extrinsic constraints on nonautonomous dynamical systems, one does not ex-

haust all possible environments as was done above, and so the observer still plays a role in

deciding what environmental variables or behavioural dynamics are relevant.

It is also interesting to consider how the concept of essential variables maps to the

intrinsic case. If we understand an essential variable to be a variable such that changes in

its state can change the region of the viability constraint the system as a whole is in, then

the essential variables implied by an intrinsic constraint include not only the components

of the structure, but also environmental components. For instance, consider Example 14

where, for any given structure, the system could be in either int(V) or �V, depending on

the state of the (1,2)-environment. Moreover, what set of essential variables are relevant

at a given time will change depending on both the structure and transition considered; in

Example 13, the set of relevant (1,2)-environment components di昀昀er between each class.

Even more interestingly, some of the essential variables may be in the 2-environment of



Autopoiesis in Larger than Life 71

a structure, and thus the information available to the system (its internal state and the

1-environment) becomes insu昀케cient to determine what region of the viability constraint it

is in.

Finally, it is worth commenting on the sense in which the intrinsic viability constraint

is derived from the organisation. Most obviously, the derivation requires us to consider

(1,2)-environments, which is information necessarily external to the organisation. We also

need to supply an LtL rule in order to determine the constraint. Regarding the 昀椀rst, it

should be clear that the space of all (1,2)-environments is not exactly new information

as much as it is the largest space of possibilities in which we can consider a system. It

should also be evident that all restrictions on this space are derived from the organisation,

since the organisation alone speci昀椀es all viable structures and transitions (Section 2.4).

Regarding the requirement of an LtL rule, this depends on whether we interpret rules

as 昀椀xed parameters of the universe, or biologically relevant variables. But even in the

latter case, we can, under speci昀椀c circumstances, derive the set of rules that support an

organisation (this is done in the next section). Thus, one could also consider the intrinsic

viability constraint to be a set of viability regions V = int(V)∪�V, one for each rule. In any

case, an intrinsic viability constraint is still derived purely from the organisation, as all

restrictions on the full space of possibilities arise from information implicit in the process

dependency graph.

2.6. Rule Derivations

This section describes a procedure by which one can derive the set of LtL rules that support

an organisation, in the sense that every transition in the interaction graph is possible when

all relevant components of the (1,2)-environment are 0-components. This means that the

following will only apply to reversible organisations (or reversible subgraphs of a larger a

organisation.)

The procedure for deriving the set of rules is as follows. We de昀椀ne an 8-tuple of param-
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eters (��0 , ��0 , ��1 , ��1 , ��0 , ��1 ), where

��0 <�0 ≤ ��0 (2.11)��1 ≤�1 < ��1 (2.12)��0 <�0 ≤ ��0 (2.13)��1 ≤�1 < ��1 (2.14)0 < �0 ≤ �0 ≤ �1 ≤ �1 ≤ 1. (2.15)

Thus, we are trying to derive bounds on each LtL rule parameter such that any (�, �0, �1, �0, �1)
that satis昀椀es the bounds is guaranteed to support the organisation. Note also that Equa-

tion 2.15 is a modi昀椀cation of Equation 2.3, where now we require �0 > 0. This is to en-

sure that a universe of all 0-components is stable, consistent with our assumption about

0-components in the (1,2)-environment.

The 昀椀rst step to 昀椀nding values for these parameters is to partition the processes by

their type: production (X �), 0-maintenance (X¬�), 1-maintenance (X �), and destruction

(X¬�). Given our assumption about the 1-environment, this means that partial processes

are now treated as fully determined processes, with all unspeci昀椀ed components set to 0.

Let � = (�,�, �, �) be a process dependency graph; then

X � ∶= {�� ∶ p�(0⃗) = 0 ∧ ∃(�, ⋅, �) ∈ �(��1 = 1)} (2.16)

X¬� ∶= {�� ∶ p�(0⃗) = 0 ∧ ∃(�, ⋅, �) ∈ �(��1 = 0)} (2.17)

X � ∶= {�� ∶ p�(0⃗) = 1 ∧ ∃(�, ⋅, �) ∈ �(��1 = 1)} (2.18)

X¬� ∶= {�� ∶ p�(0⃗) = 1 ∧ ∃(�, ⋅, �) ∈ �(��1 = 0)} . (2.19)

Here ��1 is the component produced by the process (�1 in � = ( ⃗�, �0, �1)), and �� = (��,p�)
is the process associated with the label � ∈ �. Note that these sets will exclude any pro-

cesses that do not enable anything, since the products of such processes are always irrele-

vant.
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Now we can compute the 8 parameters:

��0 ∶= min{Ψ(0⃗) ∶ � ∈ X �} (2.20)��0 ∶= max{Ψ(0⃗) ∶ Ψ(0⃗) < ��0 , � ∈ X¬�} (2.21)��1 ∶= max{Ψ(0⃗) ∶ � ∈ X �} (2.22)��1 ∶= min{Ψ(0⃗) ∶ Ψ(0⃗) > ��1 , � ∈ X¬�} (2.23)��0 ∶= min{Ψ(0⃗) ∶ � ∈ X �} (2.24)��0 ∶= max{Ψ(0⃗) ∶ Ψ(0⃗) < ��0 , � ∈ X¬�} (2.25)��1 ∶= max{Ψ(0⃗) ∶ � ∈ X �} (2.26)��1 ∶= min{Ψ(0⃗) ∶ Ψ(0⃗) > ��1 , � ∈ X¬�} , (2.27)

where Ψ = � ∗ p is the (lower bound) density of the process �. The basic idea in the

de昀椀nition of these parameters are to 昀椀nd the processes in the network with the highest or

lowest density in any set X . For example the inclusive upper bound for �0, ��0 , is de昀椀ned

as the smallest density of a production process. If �0 were any larger, then that process

would become 0-maintenance, and thus the organisation would no longer be realised.

However, some quali昀椀cations need to be made about these de昀椀nitions, since some may

of the values not be de昀椀ned when any of the process sets X are empty (i.e., when not all 4

process classes are present in the organisation). If any of the parameters are unde昀椀ned,

they can be ignored in the inequalities. However, when the parameter is needed to compute

another (e.g., ��0 in ��0 ), more care is needed. Speci昀椀cally, if X � is empty – i.e., ��0 and ��1
are unde昀椀ned – ��0 should be ignored in the de昀椀nition of ��0 , and ��1 should be ignored

in the inequality 2.12. Otherwise, if a parameter does not exist, it can be ignored in any

de昀椀nition that it appears in.

The logic of and motivation for this procedure is described in detail in Section A.1.4, but

it is basically grounded in three basic assumptions: (i) there is a 0-maintenance process

with Ψ < �0; (ii) if there is a 0-maintenance process with Ψ > �1, X � must be non-empty;

and (iii) X � and X¬� are always non-empty (i.e., there are always 1-maintenance and 0-
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maintenance processes). These assumptions limit the power of the method, as it may not

be exhaustive when any of the sets X do not exist. For instance, a block can be supported

by a rule in which all 0-maintenance processes have Ψ > �1, violating assumption (i).

However, every rule derived by this procedure is guaranteed to support the organisation

when every relevant component in the (1,2)-environment is 0. Moreover, in the case where

every X does exist, the derived rules should include all and only those rules that support

the organisation under those same environmental conditions.

Example 15: � = 1 Block. Using the organisation in Example 1, we get 12

processes in X¬�, 4 processes in X �, and all other sets empty. This gives

��0 = max{Ψ(0⃗) ∶ � ∈ X¬�} = 29��1 = max{Ψ(0⃗) ∶ � ∈ X �} = 49��0 = min{Ψ(0⃗) ∶ � ∈ X �} = 49.
Therefore, every rule (1, �0, �1, �0, �1) that satis昀椀es

�0 > 29�0 ≤ 49 ≤ �10 < �0 ≤ �0 ≤ �1 ≤ �1 ≤ 1
will support the � = 1 block when every component of the 1-environment is 0.

As mentioned above, there are rules that support a � = 1 block but are not accounted

for by Example 15. For instance, any rule with �0 = �0 = �1 = 0 and �1 ≥ 49 will also

support the block, even when the 1-environment contains 1-components.

Example 16: Reversible Gliders. Consider a reversible subgraph of the glider

organisation (Example 7) corresponding to any one of the 4-cycles in Figure 2.19c

with black and grey edges. From this, we get 8 processes in X �, 60 in X¬�, 12
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in X �, and 8 in X¬�. This gives us

��0 = min{Ψ(0⃗) ∶ � ∈ X �} = 39��0 = max{Ψ(0⃗) < ��0 ∶ � ∈ X �} = 29��1 = max{Ψ(0⃗) ∶ � ∈ X �} = 39��1 = min{Ψ(0⃗) > 39 ∶ � ∈ X¬�} = 49��0 = min{Ψ(0⃗) ∶ � ∈ X �} = 39��0 = max{Ψ(0⃗) < 49 ∶ � ∈ X¬�} = 29��1 = max{Ψ(0⃗) ∶ � ∈ X �} = 49��1 = min{Ψ(0⃗) > 49 ∶ � ∈ X¬�} = 59.
Plugging these values into the inequalities, we get exactly one rule:

(� = 1, �0 = 39, �1 = 39, �0 = 39, �1 = 49) .
Therefore, gliders can only exist under the GoL rule.

It can be easily veri昀椀ed that the GoL rule also satis昀椀es the constraints derived in Ex-

ample 15.

The signi昀椀cance of these derivations depends on how we interpret LtL rule parame-

ters physically. If we consider them simply as static parameters de昀椀ning the unchanging

physical laws of an LtL universe, then their derivation from the organisation is less biologi-

cally interesting – no biological problem is solved if we derive quantum mechanics from the

organisation of a cell. However, if we interpret LtL rules as a more general physical param-

eter, then there is something of interest, especially regarding viability. For instance, the

parameters could be interpreted as something akin to temperature (modulating the sensi-

tivity of reactions to changes in the proportion of reactants), and thus the rule derivation

would be akin to deriving the range of temperatures in which a cell could survive. If the
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derivation is restricted to subgraphs of the organisation, then this would be akin to 昀椀nding

the range of temperatures in which a cell exhibits a certain behaviour (e.g., sporulation,

virulence, etc.).

This derivation procedure also o昀昀ers an alternative to Evans’ (2003) approach to 昀椀nd-

ing rules for morphologically similar bugs at increasing �. For example, given a translation-

invariant bug at some �, Evans’ method for 昀椀nding a similar bug at � involved rescaling

the initial bug by �/� and searching around a scaled rule (using a formula quadratic in �;

Evans, 2003, p. 51) until the dynamics settle into a bug with the desired properties. Unfor-

tunately, this method involves a fair amount of experimentation. Using the rule derivation,

however, a more direct method is possible. The 昀椀rst step is the same: scale an initial bug

by �/�. The next step is to “smooth out” this larger con昀椀guration by, for example, applying

a convolution (not necessarily the same as in Equation 2.1). Then one could specify a trans-

lation vector ⃗� to get an interaction graph, and then derive a process dependency graph

from this. Finally, the rule derivation would give a set of rules that supports the scaled

bug. This method has advantages in both not requiring experimentation and providing

more than just one rule.

Whether it is possible to similarly derive rules for non-reversible organisations is at this

point unclear. The main di昀케culty is that processes could no longer be treated in isolation,

and thus the spatial embeddings of the organisation would need to be considered in order

to determine what process densities could be simultaneously realised. This forces us to

restrict both the space of rules and the space of (1,2)-environments simultaneously. An

intermediate possibility would be to assume that every structure in an interaction graph

belongs to some reversible subgraph from which a set of rules can be derived. Then for

each such rule, one could search for perturbations satisfying the remaining edges of the

interaction graph (using the method described in Section 2.5). Then every rule where a

perturbation exists for every edge supports the full non-reversible organisation.

***
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The theory of autopoiesis presented in this chapter applies to any LtL universe of any�. However, showing that there exists autopoietic systems for any � is non-trivial. Evans

(2003) provides rigorous results that prove that (�+1)×(�+1) blocks and �×(�+2) blinkers

exist for all 昀椀nite � > 0. Unfortunately, no such results exist for bugs with stomachs,

though there are empirical results suggesting that translation-invariant bugs can be scaled

arbitrarily, as mentioned above in Section 2.1 (Evans, 2003).

Given that 昀椀nding a formula for rules supporting translation-invariant bugs is so dif-

昀椀cult, an alternative approach could be to characterise limiting sequences of process de-

pendency graphs and show that the limit extends inde昀椀nitely. Then, for any graph in the

sequence, a supporting rule can be derived. Fortunately, there are rigorous results that

show that there is a continuum limit of LtL, called RealLife (Pivato, 2007). Moreover, the

existence of still-lifes in this limit has been proven. The next chapter develops a theory of

autopoiesis in RealLife, and de昀椀nes the convergence of sequences of LtL organisations to

this limit.



Chapter 3

Autopoiesis in RealLife

This chapter develops a formal framework for analysing autopoiesis in RealLife Euclidean

automata (EA). First, I will de昀椀ne RealLife and discuss some of the rigorous results relat-

ing it to LtL. Then I will extend the interpretation of autopoiesis presented in Chapter 2

to RealLife, before making this interpretation mathematically explicit in Section 3.2. Sec-

tion 3.3 will show how autopoiesis in LtL can be treated as an approximation to RealLife,

or equivalently, how the theory presented in this chapter is the continuum limit of the

LtL theory. The remaining sections present the rest of the RealLife theory: the cognitive

domain (Section 3.4), the intrinsic viability constraint (Section 3.5), and rule derivations

(Section 3.6). A rigorous statement of the theory presented in this chapter can be found in

Appendix A.2.
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3.1. RealLife

RealLife is a family of �-dimensional Euclidean automata (Pivato, 2007) based on LtL

(Evans, 2001). The main di昀昀erence is that ℤ� is exchanged for ℝ�. Thus, keeping the

same M = {0, 1}, the state of a RealLife universe is given by a function u ∶ ℝ� → M ,

assigning a value to each point in �-dimensional space; again, I notate the space of these

functions U . The RealLife neighbourhood is speci昀椀ed by a choice of �-norm and a 昀椀nite

radius � ∈ ℝ+: N ∶= {� ∶ ||�||� ≤ �, � ∈ ℝ�}. I will usually assume � = ∞, except when

stated otherwise. I will always assume � = 2.

The density function Ψ is de昀椀ned analogously to LtL:

�(�) ∶= �[N ]−1
1N [�] (3.1)

Ψ(�) ∶= � ∗ u(�) = �[N ]−1 ∫�∈N

u(� − �)�[��], (3.2)

where � is the �-dimensional Lebesgue measure on ℝ� (a function giving the volume of a

region.) A RealLife EA is then de昀椀ned as on operator � ∶ U → U :

�[u](�) ∶= u(�)1[�0, �1] (Ψ(�)) + (1 − u(�))1[�0, �1] (Ψ(�)) . (3.3)

The rule parameters (�, �0, �1, �0, �1) di昀昀er slightly from LtL. Most obviously � is now a

real number, as stated above. Moreover, the inequality that the parameters must satisfy

now includes 0 < �0 and �0 < �1 (instead of 0 ≤ �0 and �0 ≤ �1):

0 < �0 ≤ �0 < �1 ≤ �1 ≤ 1. (3.4)

RealLife EAs are continuous space, discrete time universes. That is to say, � is not

a di昀昀erential equation – the dynamics can only evolve in discrete steps. Thus, patterns

in RealLife are still described by 昀椀nite sets of functions, and we can directly carry over
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the classes of emergent patterns in LtL: a still-life is a function u = �[u]; an oscillator

u = � ̄�[u], for some ̄� ∈ ℕ; and a bug � ⃗� ∘ u = � ̄�[u] for some ̄� ∈ ℕ and ⃗� ∈ ℝ�.

Pivato (2007, Theorem 2.1) proved that RealLife EA is the limit of LtL CAs as � → ∞.

This naturally raises the question whether still-lifes, oscillators, and bugs also exist in

RealLife. Fortunately, Pivato (2007, Proposition 3.4) has provided rigorous results that

show that a generalisation of the block exists (however, no proofs yet exist for the other

classes). Thus, it is natural to try and generalise the theory presented in Chapter 2 to

RealLife. This would also show that this interpretation of autopoiesis has power beyond

CAs.

Note that there are di昀昀erent ways to interpret the formal relation between LtL and Re-

alLife, and what this means for the autopoietic theory. At the end of Chapter 2, RealLife

was introduced as the in昀椀nite limit of LtL – practically, RealLife as demonstrating inde昀椀-

nite discrete scaling, and (potentially) as tool to approximate very large LtL CAs. However,

we can invert this relation: LtL as a discrete approximation to RealLife. These are equiva-

lent interpretations (in fact, Pivato (2007, Theorem 2.1) proves RealLife is the limit of LtL

by showing that LtL can approximate RealLife arbitrarily well). Practically, we can treat

either as an approximation of the other depending on what we are interested in and what

is easier to compute.

Before laying out the details of the theory in RealLife, it will be useful to map our

interpretation of autopoiesis more broadly. First, the chemistry remains largely the same

(Figure 3.1a): a process is a pair � = (� ⊆ N ,p ∶ � → M ), with product �[p](0⃗).

The main di昀昀erence here is that there are now in昀椀nitely many reactants in �. Process

dependency also extends directly: �� at �� and �1 enables �� at �� and �2 if ||�� − ��||� ≤ �
and �2 = �1 + 1. The reactant that �� produces in �� is �� − �� ∈ �, whose state is the

product of ��.
Structures similarly extend from LtL in a straightforward manner. All that changes is

that (S , s) now has S ⊂ ℝ2. The notion of �-environments also applies: the set of points

in S and its 1-environment, E(S ), is the set of points in the neighbourhood of some � ∈ S ;
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(a) (b)

Figure 3.1: (a) Process classes in RealLife. The top right process is a either a 0-maintenance
or a production process depending on the rule supplied, since it has a center-component of
0. The process to the right of that has a center-component of 1 and is either a destruction
or a 1-maintenance process. The bottom two processes are partial versions of the above
two, with � ⊂ N . The product of these process cannot be determined. (b) Dynamics of
structures in RealLife. On top is a structure that only di昀昀ers from the block by a set of 0
area. This structure updates to a function that di昀昀ers at most by that area. On the bottom
is a block structure with a set of 1-components inserted into its boundary. After updating,
this will result in changes to the structure beyond the modi昀椀ed region.

the �-environment is attained by recursing this function: E�. Again, the main di昀昀erence

here is that there are now in昀椀nitely many components in the structure.

These in昀椀nities introduce a new complication not present in LtL: two structures (or

two processes) can di昀昀er on some subset of their components, but be “e昀昀ectively the same.”

Speci昀椀cally, if two functions a,b ∈ U di昀昀er on some set with an area of zero (�[A ] = 0),

then �[a] and �[b] will similarly only di昀昀er at most by that set. For example, if one

modi昀椀es a single component of a structure, the global dynamics of that structure will be

unchanged; if a set of components with non-zero area is modi昀椀ed, however, the structure

may be destroyed just as in LtL (Figure 3.1b). Intuitively, then, two structures that di昀昀er

only by a set of non-zero area should be considered the same. This will simplify aspects
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of the theory developed below by allowing us to describe structures by a single functions,

ignoring all other functions that are almost everywhere equal (di昀昀er by a set of zero area).

My interpretation of what constitutes an emergent individual will also remain the

same as in LtL. That is, an individual is de昀椀ned by its organisation such that every real-

isation of the organisation is described by a structure (S , s) with a �-wide boundary of

0-components (equivalently, we can state that S is equal to its 1-components and their

1-environment). The dynamics of these structures must also be such that if a process in�� = (S�, s�) enables some process in ��, then every process in �� is enabled by a process in��: �� must be contained within the light cone of �� ((S� + �) ⊆ E(S�)). I will also only be

considering organisations whose set of structures is 昀椀nite. In principle, organisations with

in昀椀nite structure can exist in RealLife, but many aspects of the theory developed here fail

in that case. However, any organisation scaled from LtL will have a 昀椀nite structure set, so

this does not impact the theoretical interest of the theory as a limit of LtL.

3.2. Organisation

This section will generalise process dependency graphs to describe organisations in Real-

Life. But 昀椀rst, it will be productive to recall the desiderata we want the representation

of an autopoietic organisation to satisfy. Most obviously, it will need to describe depen-

dency relations between processes, and specify those processes. It should also be invariant

with respect to how processes are arranged – the representation of a process should tell us

nothing about its spatial embedding, except via dependencies. Finally, we should be able

to derive objects describing the cognitive domain and the intrinsic viability constraint.

The appropriate object to describe autopoietic organisations in RealLife is a graphon

(graph function; Lovász, 2012). I will 昀椀rst give the de昀椀nition more formally and then give

an intuitive description of how it represents an autopoietic network and satis昀椀es the above

desiderata.

Let � ∶= N × M × M be a set with elements � = (��, ���, ���), and let �0 be � with a
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special 0 element (it does not have to be 0, just an arbitrary element not in �). Let ℙ(�0)
denote the space of probability measures on �0. Then a process dependency graphon is a

function � ∶ Ω × Ω → ℙ(�0), where Ω is an arbitrary set.

We interpret this de昀椀nition as follows. First, Ω is a set of process labels. �(�, �) = �
then assigns an edge decoration to every pair of processes � and �. The edge decoration � is

unfortunately a probability measure, which is not very useful. However, if we assume some

bijection � ∶ � ↦ �, and that � only gives measures in the image of �, then we can de昀椀ne a

new function �(�, �) ∶= �−1∘�(�, �) that gives edge decorations in �0. These are the same

edge decorations as in LtL, except we now have the special 0 element which we interpret

as indicating no dependency relation. In other words, �(�, �) = � = (�, �0, �1) gives the

dependency relation for every pair of processes � and �, where �� is the component in � pro-

duced by �, ��1 is the state of that component, and ��0 is the state of the center-component

of � (to simplify notation, I will denote these by ��(�, �), ��1(�, �), and ��0(�, �), respec-

tively). The reason for using probability measures will become clear in Section 3.3 when we

need to de昀椀ne the convergence of graphs to graphons. For the autopoietic theory, though,

we can restrict our attention exclusively to �.

Just as in LtL, process functions are implicit but recoverable. Speci昀椀cally, given some� ∈ Ω, we get �� = {��(⋅, �)} as the set of all �� where �(⋅, �) = �, and p�(�) =��1 (⃖⃖⃖⃖ ⃖⃖ ⃖⃖��(�), �), where ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖��(�) gives the set of processes � that enables � with �(�, �) =(�, ⋅, ⋅).

We can de昀椀ne the closure of an organisation � by relabelling all edges pointing to

processes that do not enable anything:

��������(�, �) ∶= ⎧{{⎨{{⎩
�(�, �) ∃�′ s.t. �(�, �′) ∈ �0 . (3.5)

The notion of reversible organisations also generalises. An organisation is reversible when

every reactant of every process is produced by exactly one process. More technically, we

sat that � is reversible if, for every � ∈ Ω and � = (�, ⋅, ⋅) ∈ �, there is at most one � such
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that �(�, �) = �.

This de昀椀nition of process dependency graphons allows us to have in昀椀nitely many pro-

cesses and edges, as Ω need not be a 昀椀nite set. Moreover, we need not assume any speci昀椀c

topology on Ω: processes can be randomly rearranged, so long as � is changed accord-

ingly. In other words, the speci昀椀c representation of an organisation is not, strictly speak-

ing, unique – two representations �� and �� are equivalent if there is some map � ∶ Ω� → Ω�
such that ��(�, �) = �(� (�), � (�)). Similarly, the choice of � is arbitrary. Therefore, any

result of the theory obtained for one representation should still hold for all equivalent rep-

resentations.

One last point bears mentioning here. This formalisation does not generalise multi-

graph organisations. That is, �(�, �) is unique for every ordered pair (�, �). In principle,

one could represent multigraphs that have an upper bound � on the number of parallel

edges by using ��0 (Lovász, 2012, p. 324). However, this would signi昀椀cantly complicate

the theory and set an unnecessarily arbitrary limit on what organisations can be repre-

sented. It is also unclear whether graphons with unbounded parallel edges could be used,

but again, this would make things quite complicated.

We can now begin looking at examples of autopoietic organisations in RealLife, noting

some of their signi昀椀cant features and the practical issues that arise in 昀椀nding an appro-

priate representation.

Example 1: The Block. Let Ω����� ∶= ⨀3�2 (0⃗) where

⨀� (�) ∶= {� ∶ ||� − �||� ≤ �} .
Then the block organisation is de昀椀ned

������(�, �) ∶= ⎧{{⎨{{⎩
(� − �,1⨀�/2(0⃗)(�),1⨀�/2(0⃗)(�)) || � − �||� ≤ �
0 . (3.6)

������ is reversible and equivalent to its closure.
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Figure 3.2: Schematic of the � = 2 block organisation. Beige and brown points are 0- and
1-components, respectively. In red is a pair of edges between 1-maintenance processes,
with the equation describing this edge in the corresponding color on the right. In blue is
a pair of edges between 0-maintenance processes. In purple is a pair of edges between a
1-maintenance and a 0-maintenance process. Edges between processes of di昀昀erent types
cannot be reciprocated by inverting the edge.

The block will be our most lucrative example, as it is the simplest object we will consider

and is the only one proven to exist in RealLife, as mentioned above. Example 1 de昀椀nes the

organisation of the block mathematically (Figure 3.2 provides a schematic illustration).

This representation is quite simple and takes advantage of our knowledge of the block’s

morphology. Ω����� is simply the set of points that constitute a block centered at the origin:

the process � ∈ Ω����� is located at ��(�) for a block centered at �. Recall that, so long as

the theory holds for all equivalent representations, we can use any such representation we

like – we can use knowledge of the structure so long as the theory does not depend on that

knowledge.

The two cases in ������ correspond to whether a dependency relation exists between� and � (whether � is in the neighbourhood of �). The result in the 昀椀rst case is an edge

decoration in �. � − � ∈ N is the vector from � to � which is equivalent to the reactant

in �� that � produces (−� in Figure 3.2). The two indicator functions give the center-

component of �. Again, since Ω����� is just the components of the block’s structure, we
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(a) (b)

Figure 3.3: The block structure for di昀昀erent �-norms. Beige points are 0-components and
brown points are 1-components. (a) Block structure for � = ∞. (b) Block structure for� = 2.

also know that all 1-components are in ⨀�/2 (0⃗) (the brown region of in Figure 3.2). We

also know that every process in the block is either 1-maintenance or 0-maintenance, so the

product of every process is equal to its center-component.

One of the block’s features that makes it especially useful is it exists for any �-norm,�, and �. Thus, Example 1 gives us a family of autopoietic systems that we can choose

between, depending on our application. Note, however, that di昀昀erent � will result in di昀昀er-

ent morphologies: � = ∞ will give a square and � = 2 will give a circle (Figure 3.3). The

process neighbourhoods in these two organisations will similarly be squares and circles of

radius �, respectively.

The block also makes clear that, in general, graphon organisations are very high di-

mensional objects. Counting up the dimensions of ������, we get � + 3 from �0 = (N ×
M × M ) ∪ {0} and � from Ω�����, which gives a total of �2(�+ 3) = �3 + 3�2. In � = 2
universes, ������ is a 23 +3(22) = 20 dimensional object (a function over a 4-dimensional

space whose values are 5-dimensional objects). Thus, visualising graphons is not generally

feasible. But at least for the block, we can begin to get a grasp by reducing the dimension-

ality. If we ignore the 0 element and only label edges with N , the values of this modi昀椀ed� are 2 dimensional, giving 8 dimensions in total. Taking this further, if we restrict our-

selves to a boolean indicating whether any dependency relation exists at all, the values of
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Figure 3.4: Simpli昀椀ed representation of the block graphon. ⟨�1, �2⟩ are the coordinates
of source processes in Ω; ⟨�1, �2⟩ are the coordinates of target processes. On the bottom
are line plots representing samples of target processes ⟨�1, �2⟩. Above are plots of the set
points (�1, �2, �2) such that �(⟨�1, �2⟩, ⟨�1, �2⟩) ≠ 0 for any ⟨�1, �2⟩ in the sample of the
corresponding plot.
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� become 1-dimensional objects, giving 5 dimensions in total, which we can visualise in a

piecewise manner (Figure 3.4).

Example 2: � × 2� Blinker. Let

B0 ∶= [−3�2 , 3�2 ] × [−2�, 2�] × {0}
B1 ∶= [−2�, 2�] × [−3�2 , 3�2 ] × {1}
B10 ∶= [−�2, �2] × [−�, �] × {0}
B11 ∶= [−�, �] × [−�2, �2] × {1}.

Let Ω������� ∶= B0 ∪ B1. The blinker organisation in � = ∞ universes is then

de昀椀ned

��������(�, �) ∶= ⎧{{⎨{{⎩
(� − �,1

B1� (�),1B11−�(⟨0, 0, 1⟩ − �)) �(�, �)0 (3.7)

where � is true when,

� ∈ [−3�2 , 3�2 ]2 × {�} ∧ � ∈ B1−� ∧ || � − �||∞ ≤ �. (3.8)

�������� is reversible and not equivalent to its closure.

Example 2 appears much more complicated, but the logic of the de昀椀nition is e昀昀ectively

the same as the block in Example 1. The main complication introduced here is the addition

of a structure. This is why the sets B� have the {�} part – we need to separate processes

by indexing by the structure they belong to. Thus B0 is the set of processes in the vertical

blinker, and B1 is the set of processes in the horizontal blinker (Figure 3.5). Note also that

the sets are aligned according to the transition the blinker undergoes. That is, B0 is cen-

tered on B1. The sets B1� are the 1-components of the corresponding blinker con昀椀gurations

B� (Figure 3.5).



Autopoiesis in RealLife 89

Figure 3.5: Ω representation of a � × (2�) blinker. B0 is the set of points in the vertical
blinker con昀椀guration; B1 is the set of points in the horizontal con昀椀guration. B1� is the
set of 1-components in the set B�. The black boxes outline the set of points that produce
components in the organisation.

The edge decorations also change here to account for the fact that the product of a

process in one blinker structure is always in the other structure. And since the sets B� are

aligned according to the structural transition, we get the product of a process at � ∈ B� by

昀椀nding the state of the component at the same point in the opposite blinker structure (this

is why we need ⟨0, 0, 1⟩ − � to match the structure indices).

The condition � is also more simple than it may seem. The ||⋅||∞ part is the just same as

in the block. The � ∈ B1−� simply ensures that the enabled process is in the structure oppo-

site of �. Finally, The � ∈ [−3�2 , 3�2 ]2 × {�} ensures that only processes in the region where

B0 and B1 overlap enable anything (Figure 3.5). This means that RealLife also contains

processes that do not enable anything else, and processes that have no enabling relations

pointing to their center-component. Thus, the degeneracy discussed in Chapter 2 where

an organisation fails to specify a well-de昀椀ned cognitive domain persists in RealLife, and

the blinker exhibits this property. For instance, consider any � ∈ B0\([−3�2 , 3�2 ]2 × {0});

such a process will always have �(�, ⋅) ∉ � and no process � where �(�, �) = (0⃗, ⋅, ⋅).

Note that the morphology of this blinker is not a limit of the LtL blinkers analysed in

Chapter 2. The LtL blinkers were characterised by a �∗ × (�∗ + 2) region of 1-components
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(�∗ ∈ ℕ denoting an LtL neighbourhood radius). But the limit of this is a block:

lim�∗→∞ (�∗ ��∗) × ((�∗ + 2) ��∗) = � × �
(the �/�∗ factor is to treat �∗ as a discretisation of �). Thus, the class of oscillators that

converge on Example 2 are �∗ × 2�∗ blinkers.

This scaling problem also brings out another signi昀椀cant di昀昀erence between RealLife

and LtL: the neighbourhood radius does not qualitatively change anything in RealLife. In

other words, the morphology of an emergent individual does not change with � as it does

in LtL. This is why both Example 1 and Example 2 were parametrised by �.

As we will see, this organisation is quite degenerate. However, its organisation is a rel-

atively simple example that has multiple structures and exhibits the relevant degeneracies

that were observed in LtL.

Example 3: Translation-Invariant Bug. Let Ω��� ∶= [0, 2�) × (0, 1]. Let �1 ⊂
S denote the set of 1-components for a bug with stomach � = (S , s) with � = 2,

and let ⃗� denote its translation vector. Let �0, �1, and �2 = �1 +� be functions

on ℝ that represent the inner ��1, outer ��1, and �S , respectively, in polar

coordinates (Figure 3.6). Let �(�) ∶= ⟨��, �2(��)��⟩ transform points in Ω to S

in polar coordinates, where � = ⟨��, ��⟩ ∈ Ω. Finally, let ℎ be a function that

transforms polar to Cartesian coordinates and let ℎ̄(�, �) ∶= ℎ−1(ℎ(�(�)) − �)
be a function that shifts a point � in polar coordinates by some Cartesian vector�. Then the organisation of a translation-invariant bug is de昀椀ned

����(�, �) ∶= ⎧{{⎨{{⎩
�(�, �) �(�, �)0 (3.9)

where � is true when

||ℎ(�(�)) − ℎ(�(�)) − ⃗�||2 ≤ � ∧ ℎ̄�(�, ⃗�) ≤ �2(��) (3.10)
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Figure 3.6: Representation of a bug structure by polar functions. In orange is the edge �0
of the bugs stomach (the inner region of 0-components). In blue is the outer edge �1 of the
bugs 1-components. In pink is the outer edge �2 of the the bugs boundary.

and

�(�, �) = (ℎ(�(�)) − ℎ(�(�)) − ⃗�,
1[�0(��),�1(��)] (��(�)) ,

1[�0(ℎ̄�(�, ⃗�)),�1(ℎ̄�(�, ⃗�))] (ℎ̄�(�, ⃗�)))). (3.11)

���� is reversible and not equivalent to its closure.

Example 3 is the most complicated organisation we will deal with, but most of its com-

plexity simply arises from transitions between polar and Cartesian coordinates. The rea-

son I use polar coordinates is to simplify the representation of smooth morphologies. For

instance, we can get expressions for �0 and �1 as follows. First, we scale an LtL to some

large �∗ and 昀椀nd the boundaries of its region of 1-components (left side of Figure 3.7). Then

we convert these boundaries to polar coordinates and linearly interpolate to get periodic

functions �� ∶ [0, 2�] → ℝ (center of Figure 3.7). Finally, we de昀椀ne �� to be a Fourier
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Figure 3.7: The derivation of a morphology from an LtL bug. On the left is a � = 40 LtL
bug (the same as in Figure 2.3). 1-components are in grey, except for the two boundaries of
the region, indicated in blue and orange. In the center is a linear interpolation of the blue
and orange points in polar coordinates. On the right is a Fourier series approximation of
the linearly interpolated functions (speci昀椀cally, they 7 term Fourier series.)

series approximating the function �� (right side of Figure 3.7). If the number of terms in

the Fourier series (its accuracy) is relatively low, the morphology of the resultant bug will

appear smooth – the series in Figure 3.7 and Figure 3.6 have 7 terms. Importantly, though,

this procedure does not give the limiting morphology of the LtL bug, but just a morphology

that is smooth and simple to describe mathematically. In fact, the the LtL bug used in

Figure 3.7 is scaled from � = ∞ universes. If we wanted to approximate the limiting mor-

phology properly, it would be best to scale an LtL bug from a � = 2 universe much further,

and then use Fourier series with many more terms. (Note that Example 3 does not specify

any speci昀椀c morphology. That is, it describes the organisation of any translation-invariant

bug whose structure can be represented with the polar � functions.)

The reason why �2 is not de昀椀ned in a similar manner is that the scaling method just

described would, in general, fail to specify a structure with a proper boundary (the gap

between �1 and �2 might not correspond to the neighbourhoods of the processes on �1). To

avoid this problem, we assume � = 2 so that �2 = �1 + � will result in a proper boundary.

Thus, for bugs in RealLife with � = ∞, a di昀昀erent representation of their morphology will

be needed.

These function now allow us to represent any translation-invariant bug with the sameΩ, since we can simply scale every point in the structure by �2 (� is the inverse of this).
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Figure 3.8: Scaling of a bug structure into Ω. On the left is a selection of 1-components in
polar coordinates from the structure of the bug in Example 3. In red is the unit circle. On
the right is the same set of points scaling by ⟨�, �⟩ ↦ ⟨�, �/�2(�)⟩. The red circle is still
the unit circle, at the same scale as on the left.

This results in the transformation in Figure 3.8, where points in the structure are mapped

to 昀椀t into Ω.

This Ω has a notable feature in that not every point in the structure is mapped. Namely

the component at 0⃗ is not contained in Ω. This is because such a point cannot be mapped

uniquely into polar coordinates: ℎ ∶ ⟨0, 0⟩ ↦ ⟨�, 0⟩ for all �. However, this will not present

a problem for us since we are assuming that any structures that are almost everywhere

equal are good enough – we can have “holes” in Ω so long as the structures derived from

the organisation are almost correct (in the technical sense).

With this, we can now understand the rest of the de昀椀nition. The two terms in � cor-

respond to whether (i) the process �, translated by ⃗�, is in the neighbourhood of �; and

(ii) whether � produces any component in structure. The edge decoration � is very similar

to the blinker, except instead of accounting for processes in two di昀昀erent structures, we

account for processes in di昀昀erent translations of a single structure. Thus, the 昀椀rst term

of � gives the vector from the process �, translated by ⃗�, to � (this needs to be expressed

in Cartesian coordinates, since those are the coordinates of �). The next term gives the

center-component of � by scaling it into the structure and determining whether it is in the

region of 1-components between �0 and �1. The last term gives the product of � by shifting
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it by − ⃗� and determining whether this point is in the region of 1-components.

3.3. Convergence

In this section, I de昀椀ne in what sense process dependency graphons are the appropriate

limiting objects of sequences of process dependency graphs. The proper notion of conver-

gence we need is homomorphism density (Lovász, 2012, Chap. 17). The homomorphism

density of a graph � into another graph � is the probability that a mapping of the vertices

of � on to the vertices of � preserves the edges. Homomorphism densities can also be de-

昀椀ned for graphons. This leads us to a major result of Graph Limit Theory: the limit of a

sequence of graphs is the graphon such that the limit of the homomorphism densities is

the homomorphism density of the graphon, for all �. More formally, a graphon � is the

proper limit of a sequence (��) if for every simple graph �,

lim�→∞ �(�,��) = �(�,�),
where � is the homomorphism density.

Unfortunately, de昀椀ning � for process dependency graphs and graphons is not straight-

forward: there is no natural way to de昀椀ne the homomorphism density of one process de-

pendency graph into another. However, what we can do is this. First, we scale enabling

relations in LtL into RealLife, which we can do by simply multiplying the enabling relation

by a scaling factor: (�, ⋅, ⋅) ↦ (� ��∗ , ⋅, ⋅). Thus, we treat LtL neighbourhoods as discrete ap-

proximations of a limiting RealLife neighbourhood. Then we can de昀椀ne the homomorphism

density of a Q-decorated graph into a process dependency graph, where Q is the space of

real-valued functions on �. Finally, let ���(��) give the edge decoration that the graph �
assigns to the edge from � to �. Then the homomorphism density of a Q-decorated graph �
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into a scaled process dependency graph ��∗ is de昀椀ned

�(�,��∗) ∶= 1�(��∗)�(�) ∑� ∶�(�)→�(��∗) ∏��∈�(�) ���(��)(����∗(� (�)� (�))) . (3.12)

The product here e昀昀ectively assigns to each map � a value describing how well � preserves

the edges. Thus, if any value in the product is 0 (i.e., an edge was not preserved), the value

assigned to the map is 0. These values are then summed together and normalised by the

number of maps. Note that � depends on a choice of decorations in Q, and that this may

result in densities not in [0, 1]. Thus, the interpretation as the probability of an edge-

preserving map does not in general hold here. Moreover, convergence must now exist over

all � and Q. Of course, it is impractical to simultaneously consider convergence under all

possible functions in Q (an in昀椀nite dimensional space), but we can restrict ourselves to a

subset R ⊂ Q more amenable to calculation. Still, choosing this subset is a non-trivial

task, but some natural choices will appear as we consider graphons.

To de昀椀ne homomorphism densities for graphons, we need to use the probability mea-

sures from �, which amounts to a choice of � ∶ �0 → ℙ(�0). The homomorphism density

of a Q-decorated graph � into a process dependency graphon � is then de昀椀ned

�(�,�) ∶= �[Ω�(�)]−1∫Ω�(�) ∏��∈�(�) [∫�0 ���(��)(�)�(��, ��)(��)]�[��]. (3.13)

The domain of the outer integral Ω� is the space of maps from �(�) into Ω, and �� and ��
are the images of � and � under such a map. The inner integral is the value assigned to how

the edge �� is mapped into �. Note also that � is not same as the �-dimensional measure

used in Equation 3.1, but is instead a measure of the same dimension as Ω�(�). — We

can now state precisely the notion of convergence being used here: an in昀椀nite sequence

of process dependency graphs (��∗) converges to a a graphon � if, for every Q-decorated

graph �,

lim�∗→∞ �(�,��∗) = �(�,�). (3.14)
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Choosing an appropriate � and R is in general a very di昀케cult task. However, we can

avoid this problem by using an alternative de昀椀nition of �. Let ��(�, �) ∶= ∫�0 � (�)�(�, �)(��).

If �� satis昀椀es certain properties for all � ∈ Q and every 昀椀xed (�, �) ∈ Ω2 (see Section A.3

in the Appendix for details), then Equation 3.13 can be rewritten as

�(�,�) = �[Ω�(�)]−1∫Ω�(�) ∏��∈�(�) [����(��)(��, ��)]�[��]. (3.15)

This allows us to compute � so long as we know the value of �� for every � ∈ R (assuming� is decorated only with elements of R). If we choose R to be a set of functions uniquely

associated to each � ∈ �0, we can design �� as a function of two edge decorations in �0 –

one from �−1 ∘��� and one from � – that assigns a value to how well the enabling relations

“align.”

The simplest choice of �� assigns 0 to all pairs of enabling relations that are not exactly

equal. One way to do this is to assume R is the set of indicator functions of each element

in �0. Then we get

��(�, �) =∫�0 � (�)�(�� −�(�, �))
= � (�(�, �))
= 1{�′}(�(�, �)),

(3.16)

where �(⋅) is the �-distribution over �0, and �′ ∈ �0 is the enabling relation associated

with � ∈ R. A �-distribution is de昀椀ned to have the property ∫ � (�)�(��) = � (0) for all�. Thus, it is useful to use as a kind of 昀椀lter to pick out the value of a function at speci昀椀c

points.

Unfortunately, this �� is not very useful, as �(⋅, �) will usually be 0 for any �. However,

we can modify it to give non-zero values when two enabling relations (�, �0, �1), (�′, �′0, �′1) ∈�0 satisfy �0 = �′0, �1 = �′1, and � “close enough” to �′. The only modi昀椀cation we need

to make is to change � ∈ R to be an indicator function over some set. Formally, let
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⨀�� ∶= {� ∈ �0 ∶ ||� − �||� ≤ �} give the intersection of �0 and the ball of radius � < 1
surrounding a point � ∈ �0. Now we get:

��(�, �) =∫�0 � (�)�(�� −�(�, �))
= � (�(�, �))
= 1⨀�� (�′)(�(�, �))

(3.17)

where �′ is again the point in �0 associated with � ∈ R. This de昀椀nition will give 1 when

the decorations on � and � are within � of each other and share the same �0 and �1, and

will give 0 otherwise.

To make this more concrete, we can compute homomorphism densities for sequences

of LtL blocks and the block in Example 1. But note that most R-decorated graphs � will

give �(�, ⋅) = 0. For instance, if � decorates any edge with (�, �0, �1) where �0 ≠ �1, no pair

of vertices in the block will preserve that edge, since all processes in the block are either 0-

maintenance or 1-maintenance. Thus, to observe non-trivial converge, we have to be more

careful about what graphs we choose. A simple choice is a graph �1 with a single vertex

and ���1 = 1{(0⃗,1,1)}. In this case, we can solve Equations 3.12 and 3.15 analytically, by

noticing that every map of �1 into � or � picks out a single process. Thus, we can reduce

Equation 3.12 to �(�1, ��∗) = 1�(��∗) ∑�∈�(��∗) ���1 (���∗�(��)) ,
which will give the proportion of 1-maintenance processes in �(��∗). Assuming � = ∞,

we can compute this by �(�1, ��∗) = (�∗ + 1)2(3�∗ + 1)2



98 Chapter 3

which gives rise to the limit

lim�∗→∞ �(�1, ��∗) = lim�∗→∞ (�∗ + 1)2(3�∗ + 1)2 = 19. (3.18)

Similarly for the graphon ������, Equation 3.15 becomes

�(�1, �) = �[Ω]−1∫Ω ����1(�, �)�[��]
= 19�2 ∫Ω 1⨀�� ((0⃗,1,1))(�(�, �))�[��]
= 19�2�2 = 19,

which is obviously the same result as Equation 3.18. By the same logic, one can also show

that if � were decorated with (0⃗, 0, 0) instead, we would get the limit 89 .

More generally, we can use single vertex graphs like these to show that a graphon

has the limiting proportion of processes of each type. Note, however, that none of this

constitutes proof that the block graphon de昀椀ned in Example 1 is the limiting object of LtL

blocks, but it does provide compelling evidence that this should be the case (again, a proof

would require us to show convergence for every Q-decorated graph �).

For less trivial graphs, we will usually have to compute homomorphism densities nu-

merically. Beaujean et al. (2021) describe an algorithm to compute homomorphism densi-

ties for simple graphs by random sampling, which can be extended quite easily to accommo-

date decorated digraphs. Similarly, we can compute Equation 3.15 by numerical integra-

tion. Let �2 be a graph with two vertices, shown in Figure 3.9a. The two self-connections

are labelled with indicator functions centered at (0⃗, 1, 1) and (0⃗, 0, 0) for the white and

black nodes, respectively. The cross-connections are labelled with indicator functions cen-

tered at (⟨0, �2⟩, 1, 1) for the black-to-white edge and (⟨0,−�2⟩, 0, 0) for the white-to-black

edge. That is , �2 is a graph containing a 1-maintenance and 0-maintenance process with

a reciprocated pair of edges between them. Figure 3.9b shows the convergence of �(�,��∗)
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Figure 3.9: Homomorphism densities of a two-node graph into block organisations. (a) A
R-decorated graph � with two vertices and four edges. (b) A sequence of homomorphism
densities of the graph in (a) into LtL blocks of increasing �∗. Blue dots are the values of�(�,��∗) for the (�∗ +1)× (�∗ +1) block organisation ��∗. The orange line is the value of�(�,������) for � = 1.

for a sequence of (�∗ + 1) × (�∗ + 1) LtL blocks in blue, and �(�,������) in orange, with� = 110 . Clearly, the convergence is non-monotonic, but it still approaches the density

computed for the graphon.

There is an important point regarding homomorphism densities that restricts the space

of appropriate graphon limits. Namely, for a sequence of graphs (��) with interaction

graphs I� = (S�, T�, ��, ��, ��), the total area of all structures in S� should converge to the

area of Ω. The block in Example 1 and the blinker in Example 2 both exhibit this prop-

erty, but the bug in Example 3 does not. By forcing processes to 昀椀t into the unit circle

(Figure 3.8), the area of any subset of the structure is not preserved. The simplest way

to avoid this is to de昀椀ne Ω implicitly as the area bounded by �2 (the outer most function

in Figure 3.6). This would make the homomorphism density more di昀케cult to calculate by

integrating over an irregular Ω�(�). The area of Ω would also have to be computed di昀昀er-

ently – for example, by a polar integral when using a polar Fourier series representation:

�[Ω] = 12∫2�
0 �2 (�)2 ��.

In sum, then, we have evidence that, just as structures can be scaled from LtL to Real-
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Life, so can organisations, where the limit of process dependency graphs of increasing �∗
is a process dependency graphon. This connection permits us to approximate graphons by

graphs and vice versa.

3.4. The Cognitive Domain

Due to our assumption of organisations with 昀椀nitely many structural realisations, we can

represent the cognitive domain in RealLife by an in interaction graph, just as in LtL. For-

mally, we again de昀椀ne an interaction graph I = (S, T , �, �, �), where S is a set of structures� = (S , s), T is a set of edges (��, ��, �⃗) describing transitions between structures, � and� map edges to the source and target vertex, respectively, and � ∶ T → C labels edges with

perturbation classes. I preserve the multigraph de昀椀nition from LtL for sake of consistency,

even though no graphon will have a multigraph cognitive domain.

The general procedure for deriving the interaction graph of a graphon � is composed of

the same two basic steps as in LtL: extracting and merging fragments. The main di昀昀erence

here is that we cannot extract the fragments of every process before merging, since we now

have in昀椀nite process sets. Similarly, we will have to merge fragments without knowledge

of how every process is embedded. To overcome these di昀케culties, we reconstruct one struc-

ture at a time by alternating between extraction and merging steps, keeping track of how a

昀椀nite set of processes are embedded in the fragments. Unfortunately, this requires a great

deal of mathematical machinery to work in the general case, but major simpli昀椀cations can

be made when the organisation is reversible and the structures are su昀케ciently small.

We denote the forward fragment extracted from a process � ∈ Ω by ⃗�� = ( ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗F� ⊂ℝ�, ⃗⃗ ⃗⃗ ⃗⃗F� ∶ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗F� → M ) (clearly, this has the same form as a structure (S , s), and in fact

the goal of this procedure is to modify ⃗�� until it becomes a well-de昀椀ned structure). To

de昀椀ne ⃗��, let ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗��(�) ∶= {� ∶ ��(�, �) = (�, ⋅, ⋅)} denote the set of processes that � produces
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the � reactant of; then:

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗F� ∶= ⋃�∈N

� ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗��(�) − � (3.19)

⃗⃗ ⃗⃗ ⃗⃗F� ∶= ⋃�∈N

�−� ∘ p ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗��(�). (3.20)

These are the RealLife analogues of Equations 2.5 and 2.6 from the previous chapter: we

are taking the translated union of processes in in the organisation. Note, however, that this

is only well de昀椀ned for reversible organisations, since ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗� need not give a single process in

the general case (� may produce more than one � reactant in a non-reversible organisation).

Thus, we need a way to separate the processes enabled by � into a 昀椀nite set of fragments.

This is where a major limitation of the theory arises: there is no clear way to separate

fragments without additional knowledge of how processes are arranged in Ω. This is not to

say that it is necessarily impossible to separate fragments, but that it is at the very least

quite di昀케cult. To proceed with the theory, I will assume some knowledge of Ω, but only to

extract fragments – the rest of the procedure should hold regardless of these assumptions.

Of course, this still violates the point made above that the cognitive domain should be

derived without assuming such knowledge of Ω. Thus, it is an open problem whether it is

possible to forgo these assumptions in non-reversible organisations (again, no assumptions

are necessary when the organisation is reversible).

One way to separate fragments is to assume knowledge of a partition {��} of Ω into

structures. Note that this partition need not tell us anything about how processes are

arranged within each structure, just what structure the process belongs to. Applied to

the examples in Section 3.2, the block and bug’s partition would be {Ω} and the blinkers

partition would be {B0,B1} (of course, these are just examples: none of these organisations

require the partition, since they are all reversible). Then we can extract a set of fragments
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Figure 3.10: A fragment extracted from the block. � is the center-most process in the block.⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗� is the set of processes � enables. � is a process enabled by �, whose neighbourhood (in
blue) extends beyond the block. The dashed line is the union of all the neighbourhoods
of each process in ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗�, which is the largest possible fragment that can be extracted for any
organisation. F is the actual fragment extracted from �, i.e., the union of �� for all � ∈ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗�.

from � ∈ Ω by indexing by the partition:

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗F�,� ∶= ⋃�∈N

� ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗��(�)∩�� − � (3.21)

⃗⃗ ⃗⃗ ⃗⃗F�,� ∶= ⋃�∈N

�−� ∘ p ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗��(�)∩��. (3.22)

Figure 3.10 demonstrates a fragment extraction in the block for � = 0⃗ ∈ Ω. Intuitively,

we can break down this extraction into two steps: embedding the processes, and taking

the union of their functions. The embedding here is visualised by the box labelled ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗�, as

these are all the processes enabled by �. Clearly, the actual fragment is bigger than this

embedding. For example, translating N to be centered on the process �, we see that, in

general, the largest possible fragment extracted from a process is the �-norm ball of radius2�: a 4� × 4� box when � = ∞ (the dashed line in Figure 3.10). Thus, when the entire

structure is smaller than this (as in the block), an appropriately chosen process will extract

a fragment corresponding to the complete structure.

Of course, we cannot make this assumption in the general case. Thus, the next step

of the procedure is to expand the fragment until it becomes a well-de昀椀ned structure. The

basic idea is this: given a fragment ⃗� and a well-chosen process � ↦ �′ ∈ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗F , we 昀椀nd
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Figure 3.11: Fragment expansion procedure. Given an �′ ∈ F enabled by � such that�(�, �) = (��, ⋅, ⋅), the point the forward fragment of � (largest brown square) can be
merged into F at the point �′. The square ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗� is the set of processes that � directly enables.
The larger brown square is the union of all of those processes. This expansion process re-
sults in the single larger fragment on the right.

the processes {��} that enables � by some � and merge one of their fragments ⃗��� into ⃗�,

displacing it by �� (Figure 3.11). Clearly, if �� ≠ 0⃗ and �′ is not near the boundary of

the structure, this will expand the fragment. What remains is to choose an appropriate �
and values for ��. We can achieve both as follows. For the fragments extracted from each

process �, keep track of the pairs (�′, �″), where �(�, �″) = (�′ = 0⃗, ⋅, ⋅); if the fragment is

merged to another by a displacement �, modify the point (�′, �″) ↦ (�′ + �, �″). Then, to

expand a fragment containing the process �″� , select some number of � ∈ �N (for instance,

one in each corner when � = ∞) and expand the fragment as above, merging onto �′� + �.
Thus, for each such set of expansions, we get a new set of points (�′, �″), allowing us to

continue expanding around each �′ ∈ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗F .

The expansion procedure can be terminated when every merge results in the same

fragment. Note that we only have to keep track of 昀椀nitely many processes for this to work,

since any pair of fragments to be merged will generally overlap over most of their respec-

tive domains. However, there is a degenerate case here that carries over from LtL: if an

organisation contains processes that have no enabling relations pointing to their center

component and that do not enable any process, then this procedure will fail. Just as in

LtL, components can only be speci昀椀ed by edges, and the center-component of these de-
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Figure 3.12: Recovery of missing components from degenerate blinker organisation. The
black dot is a 1-component whose neighbourhood contains some of the missing components.
By assuming that all components in the neighbourhood of such processes not already spec-
i昀椀ed are 0, one recovers the full blinker structure on the right.

generate processes are never described by any edge. Moreover, we do not have the luxury

here of being able to specify processes explicitly, due to the in昀椀nite process sets we require.

Thus, the blinker organisation de昀椀ned in Example 2 fails to derive a well-de昀椀ned cognitive

domain: the derived structures will be missing boundary components. Practically, this de-

generacy can be overcome by “昀椀lling in” where the derivation fails to specify components,

by adding in the 0-components in the neighbourhoods of the 1-components (Figure 3.12) –

we can guarantee that degenerate processes are necessarily in the boundary of the struc-

ture. But this is theoretically unsatisfying, as the organisation no longer speci昀椀es that

these components should exist, even though its persistence depends on them – there is no

complete map from processes to their spatial embedding implicit in the organisation here.

Returning to the general procedure, there are still additional steps that need to be

taken to determine whether the organisation has more than one structural realisation

and, if it does, to derive the remaining structures. Given a set of completed fragments {��}
(now structures), the 昀椀rst step is to extract the forward fragments from each of the points

kept during the expansion. Then, if none of these fragments can be merged into an existing

structure, those fragment belong to a new structure. To determine whether a fragment ⃗��
can be merged into the structure ��, we need to 昀椀nd a process in �� that � enables. This can

be done as follows. First, 昀椀nd a vector � such that when ⃗�� is displaced by �, it is contained

within S� and agrees with s� over ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗F� +�. Formally, this amounts to 昀椀nding a � ∈ S� such
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that �� [ ⃗��, ��] = ⃗⃗⃗⃗⃗⃗F�∣
S�∩( ⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗F�+�) − s∣

S�∩( ⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗F�+�) = 0. (3.23)

Then, if this � exists, one can 昀椀nd an enabling relation from � into �� if, for any �″ ∈ N +�∩ S�, �(�, �′) ≠ 0 where (�′, �″) is one of the points tracked during the expansion of ��.
Recall that every expansion involved overlapping neighbourhoods (Figure 3.11). Therefore,

every point in S� must be in the neighbourhood of some tracked (�′, �″). If ⃗�� cannot be

merged into any existing structure, it should be used to start the expansion process of a

new structure.

Now we can start putting these structures in the form of the interaction graph I� =(S, T , �, �, �) of the process dependency graphon �. Fortunately, at this point most of the

procedure is just as in LtL. We get the structure set S by centering all of the derived struc-

tures around 0⃗. We get the edge set T by considering all pairs of structures in (��, ��) ∈ S2
and determining whether any process in �� enables any process in ��, using the merging

method just described above. Speci昀椀cally, we get the edge (��, ��, �) by 昀椀nding any pair(�′�, �′�) such that �(�′�, �′�) = (−�, ⋅, ⋅), where (�′�, �″� ∈ S�) and (�′�, �″� ∈ S�) are tracked

points for �� and ��, respectively (note that this requires the tracked points to also be

shifted according to the centering of the structures).

The perturbation class function � ∶ T → C is derived just the same as in LtL: assign any

pair of edges the same label in C if the same transformation (rotation and/or re昀氀ection) can

be applied to both structures in one edge to get the structures in the other (while accounting

for the displacement vectors). Formally, if �1 = (�1�, �1�, �1) and �2 = (�2�, �2�, �2) are

edges in T , then �(�1) = �(�2) when there exists some transformation f such that f ∘ s1� =
s2� and f ∘ (��1 ∘ s1�) = ��2 ∘ s2�.

Interaction graphs in RealLife look very much the same as in LtL, except now the struc-

tures are objects in continuous space (Figure 3.13). Thus, all of the general interpretation

and utility discussed in Section 2.4 holds just as well here.
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(a) (b)

Figure 3.13: Interaction graphs for the block and translation-invariant bug. Structures are
drawn to scale for the same �. (a) The self-connection here represents an edge (�, �, 0⃗). (b)
The self-connection here represents an edge (�, �, ⃗�), where ⃗� is the translation vector of
the bug.

3.5. The Viability Constraint

The procedure for deriving the intrinsic viability constraint from a process dependency

graphon is nearly identical to the procedure for LtL described in Section 2.5. The only

di昀昀erences arise from the exchange of discrete structures for continuous structures, but

this introduces nothing fundamentally di昀昀erent to the de昀椀nitions (though some features of

the resultant objects change). Thus, I describe generalisations of both the state formulation

and the density formulation.

3.5.1. The State Formulation

The state formulation is again quite simple: given an interaction graph I� = (S, T , �, �, �),

the set of viable (1,2)-environment con昀椀gurations V� is de昀椀ned as the set of functions over

E2(S�) that contain the structure in �� ∈ S. The boundary of the viability constraint �V�
is then de昀椀ned as the subset of V� where the updated function does not contain a structure.

Then int(V�) ∶= V�\�V�.
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(a) (b)

Figure 3.14: Intrinsic viability constraints of a block and bug organisation. The red (1,2)-
environment represents the class of destructive con昀椀gurations, while orange represents
the class of environments that preserve the structure.

Example 4: The Block. The intrinsic viability constraint of the block (as de昀椀ned

in Example 1) is given by

V����� ∶= E2Ω [1⨀�/2(0⃗)] (3.24)

�V����� ∶= {u ∈ V����� ∶ �[u]∣Ω = 1⨀�/2(0⃗)} , (3.25)

where (by a slight abuse of notation) E�
A
[u] denotes the space of functions over

E�(A ) that are equal to u over A . The viability constraint is depicted schemat-

ically in Figure 3.14a.

The main di昀昀erence from LtL here is that these sets are now in昀椀nite dimensional func-

tions spaces. Thus, searching this space for perturbations to induce particular transitions

becomes extremely prohibitive. Hence we see that, even more than in LtL, the density

formulation will be is very useful here.

3.5.2. The Density Formulation

The density formulation expresses the set of viable (1,2)-environments as density functions

over structures and their 1-environments. Again, we will need some more mathematical

machinery, analogous to the de昀椀nitions we used in LtL.
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First, the core of the formulation – the inverse relation between a universe state func-

tion u and its density function Ψ – depends on results from Fourier analysis (Folland,

1992, pp. 206–244; also see Section A.2.3 in the Appendix). Thus, we get

u = F−1 [F[Ψ]
F[�] ] , (3.26)

where F is an appropriate multidimensional Fourier transform, and � is the convolution

kernel de昀椀ned above (Equation 3.1). To get the density bounds at � for a source structure

a and target structure b, we de昀椀ne

Γ[a,b](�) ∶=
⎧{{{{{{⎨{{{{{{⎩

[�0, �1] a(�) = 0 ∧ b(�) = 1[0, 1]\[�0, �1] a(�) = 0 ∧ b(�) = 0[�0, �1] a(�) = 1 ∧ b(�) = 1[0, 1]\[�0, �1] a(�) = 1 ∧ b(�) = 0.
(3.27)

(Clearly, this depends on a choice of a RealLife rule). For any edge (��, ��, �) ∈ T , Γ[s�, ��∘
s�] then gives the family of density functions over S� ∩(S� +�) such that �[s�](�) = s�(�)
for all � in that set (the violet region in Figure 3.15). To get the family of density functions

over the rest of S� +� (orange regions in Figure 3.15), we apply Equation 3.26 to any valid

density function satisfying Γ to get a set of components over all of S� + �. Then a family

of density functions can be de昀椀ned over all of S� +�, each such function implying a unique

set of components relevant to the transition.

This allows us to de昀椀ne V as the set of all density functions Ψ such that Equation 3.26

gives the function s�(�) for all � ∈ S� for some edge (��.��, �) ∈ T of the interaction

graph. int(V) then becomes the subset of these functions with Ψ(�) ∈ Γ[s�, �� ∘ s�] for

all � ∈ S� + �, for some edge (��.��, �). There are a few notable features of this de昀椀nition

worth mentioning here. First, V is still an in昀椀nite dimensional space of functions, except

instead of needing to specify a value in M for every point in E2(S�), we specify a value in[0, 1] for every point in S� + �.
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Figure 3.15: Schematic of a structural transition. The blue outline represents the initial
con昀椀guration, and the red outline represents the con昀椀guration after updating. The black
outline represents the 1-environment of the blue con昀椀guration. The violet region is the
intersection of the red and blue con昀椀gurations; the dotted violet line is the 1-environment
of this region. The orange regions are the intersection of the red con昀椀guration with the
1-environment. The orange outlines are the 1-environments of the orange regions.

Second, a density function Ψ can be tangent to the upper or lower bounds of Γ while

still maintaining viability. In order for Ψ to violate the viability of the organisation, Ψ
must be outside a given Γ over some region with non-zero area (assuming that no other Γ
is satis昀椀ed). Thus, we say that a perturbation destroys the organisation when it makes a

measurable di昀昀erence to the density function Ψ with respect to all Γ. Interestingly, if we

assume that all universe state functions u ∈ U are absolutely integrable (which we have

been) and Ψ = �∗u is only ever tangent to the bounds of Γ over sets of zero area (which is

true for most of U ), then � is continuous on U (Pivato, 2007, Theorem 1.1). In other words,

slight variations in u or Ψ will induce slight variations in �[u].

Third, density functions are continuous but not (generally) di昀昀erentiable (Figure 3.16).

This last point is especially relevant to specifying when a density function has an inverse

in U – i.e., not every Ψ ∶ A → ℝ has a universe state function as an inverse, so it would be

useful to determine when Ψ has such an inverse purely in terms of operators on density

functions. However, the standard de昀椀nition of the partial derivative of a convolution –
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Figure 3.16: Continuous density functions over the block. The bottom row contains blocks
and 1-environments, where beige and brown points indicate the 0- and 1-components be-
longing to the block, respectively, and grey and black points are the 0- and 1-components
in the 1-environment. On top is the density function over the block structure for the E(S )
con昀椀guration depicted below.

�(� ∗ �) = (�� ) ∗ � – is either 0 or unde昀椀ned for indicator functions, but clearly the rate

of change of a density function is not always equal to 0 (Figure 3.16). It is possible to

get the correct derivative with an appropriate analytic expression of Ψ directly in terms

of � ∈ ℝ�. Alternatively, one can take advantage of a convenient property of Fourier

transforms: F[���� ](�) = −��F[� ][�] ⟹ ���Ψ(�) = −�F−1[�F[Ψ](�)]. Thus, we can

compute the derivative of Ψ in terms of its Fourier transform.

The topology mentioned above works to guarantee that continuous deformations to

density functions will correspond to continuous deformations of the structure after updat-

ing (under a very speci昀椀c sense of continuous). Thus, it may seem that we should be able

to use the metric de昀椀ning that topology to 昀椀nd perturbations on a structure � that do or do

not preserve the organisation. But it turns out that that metric is not very useful for this,

as it tells us nothing about where a perturbation should be changed. Thus, we will need a

more organisation-relative metric to achieve this spatial resolution, extending the metric
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de昀椀ned in Section 2.5. De昀椀ne:

��[��,Ψ](�) ∶= inf {|Ψ(�) − �| ∶ � ∈ Γ[s�, �� ∘ s�](�)} , (3.28)

where � = (��, ��, �) ∈ T and the inverse of Ψ gives s�. Just as in LtL, this metric gives

the distance Ψ is from being tangent to a bound of Γ at �. This metric can be extended to

give the distance of Ψ from any bound of any Γ:

�V[��,Ψ](�) ∶= min {��[��,Ψ] ∶ � = (��, ⋅, ⋅) ∈ T } . (3.29)

Using either of these metrics, one can apply continuous deformations to density func-

tions at every � ∈ E(S�) until the desired transition, determined by Γ, is achieve at

those points. Note that if Ψ is changed in S�, Γ will need to be recomputed over the 1-

environment. This problem can be avoided, though, so long as one focuses on a single

transition and splits the task into two repeated steps: (i) 昀椀nd a valid Ψ over S� ∩(S� +�)
and compute Γ over the rest of S�; and (ii) continuously deform a valid extension Ψ′ until��[��,Ψ′](�) = 0 for all � ∈ S�+� and Ψ′ = Ψ over the initial region. If no Ψ′ satis昀椀es Γ,

get a new Ψ by changing the components over S� +�\S� where ��[��,Ψ′](�) was largest.

There is one quirk worth mentioning about these metrics: namely, the same Ψ can

have �V = 0 and �� > 0, but not vice versa. This is because each transition in T may not

have consistent Γ’s – i.e., the same process may produce di昀昀erent components depending

on the transition. Thus Equation 3.29 is primarily useful as a starting point to 昀椀nding any

viable perturbation, where once �V = 0, one can switch to any �� and proceed as described

above.

3.6. Rule Derivations

The rule derivations for reversible organisations in empty (1,2)-environments described in

Section 2.6 also extend to RealLife, and are in fact more powerful in this case, as we will
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see.

We will again need to compute 8 parameters (��0 , ��0 , ��1 , ��0 , ��0 , ��1 ), where

��0 <�0 ≤ ��0 (3.30)��1 ≤�1 < ��1 (3.31)��0 <�0 ≤ ��0 (3.32)��1 ≤�1 < ��1 (3.33)0 < �0 ≤ �0 < �1 ≤ �1 ≤ 1. (3.34)

Note that this last inequality is exactly the same as the general rule constraint given in

Section 3.1. We then want to partition the processes of each transition in � ∈ T into four

sets, corresponding to the process classes:

X �� ∶= {� ∈ S� ∩ (S� + �) ∶ s�(�) = 0 ∧ s�(�) = 1} (3.35)

X¬�� ∶= {� ∈ S� ∩ (S� + �) ∶ s�(�) = 0 ∧ s�(�) = 0} (3.36)

X �� ∶= {� ∈ S� ∩ (S� + �) ∶ s�(�) = 1 ∧ s�(�) = 1} (3.37)

X¬�� ∶= {� ∈ S� ∩ (S� + �) ∶ s�(�) = 1 ∧ s�(�) = 0}. (3.38)

We need to split the partitions per structure, since the calculations we will do become

extremely cumbersome when expressed purely in terms of the graphon.

Now we compute the 8 parameters, assuming structure functions are de昀椀ned so as to
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be 0 everywhere outside S :

��0 ∶= min {inf {Ψ(�) ∶ � ∈ X �� } , � ∈ T } (3.39)��0 ∶= max {sup {Ψ(�) < ��0 ∶ � ∈ X¬�� } , � ∈ T } (3.40)��1 ∶= max {sup {Ψ(�) ∶ � ∈ X �� } , � ∈ T } (3.41)��1 ∶= min {inf {Ψ(�) > ��1 ∶ � ∈ X¬�� } , � ∈ T } (3.42)��0 ∶= min {inf {Ψ(�) ∶ � ∈ X �� } , � ∈ T } (3.43)��0 ∶= max {sup {Ψ(�) < ��0 ∶ � ∈ X¬�� } , � ∈ T } (3.44)��1 ∶= max {sup {Ψ(�) ∶ � ∈ X �� } , � ∈ T } (3.45)��1 ∶= min {inf {Ψ(�) > ��1 ∶ � ∈ X¬�� } , � ∈ T } (3.46)

(3.47)

Some of these values will not be de昀椀ned when any of the sets X� are empty for all �. These

situations are handled as follows. All unde昀椀ned values can be ignored in the inequalities

above. If the parameters is needed to de昀椀ne another, the appropriate step depends on the

parameter. If X �� is always empty, ��0 should be ignored in the de昀椀nition of ��0 , and ��1
should be ignored in its corresponding inequality. Otherwise, any unde昀椀ned parameter

used in the de昀椀nition of another should be treated as if the extra condition were removed.

The logic of this is grounded in the following. First, X¬�� must always contain a process

that produces a 0-component due to being su昀케ciently below the �0 boundary. This is always

true since all viable con昀椀gurations have �-wide boundaries; thus, in a vacuum, Ψ = 0
for all processes in �S . This then means that there must always exist densities below��0 . Second, since Ψ is continuous, Ψ > �1 only if X �� is non-empty: there must be an

intermediate Ψ ∈ [�0, �1] between those processes with Ψ = 0 and those with Ψ > �1.

Thus, ��0 without the ��0 term will only be de昀椀ned over processes strictly below �0 – the

de昀椀nition of ��0 will never confuse densities above �1 for those densities below. Finally, I

assume that X �� is always non-empty.
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The reader should recall that these conditions are precisely the same as those given in

the LtL derivation. The main di昀昀erence here is that the 昀椀rst two conditions are necessary

in RealLife, but merely su昀케cient in LtL. This is what grounds my assertion that deriva-

tion is strictly stronger in RealLife. It is unclear whether the third condition (X � always

non-empty) is also necessary, but it certainly holds for any of the canonical examples of

emergent individuals (blocks, blinkers, bugs with stomachs, etc.). Thus for any organisa-

tion satisfying this last condition, this rule derivation procedure is exhaustive.

There is one last oddity to note, however. If a set of parameters gives rise to an in-

equality of the form � < {�0, �1, �0, �1} ≤ �, we can set the parameter to � without trouble.

The reason I use the non-inclusive bounds by default is because: (i) it is consistent with

the LtL de昀椀nitions; and (ii) it guarantees that some of the nice topological features over U

described above can be preserved (e.g., continuity of �). But both of these are not essential

qualities for our purposes.

Example 5: The Block. The block de昀椀ned in Example 1 is partitioned into two

sets: X � = ⨀�/2 and X¬� = ⨀3�/2 \⨀�/2. This gives:

��0 = max{sup{Ψ(�) ∶ � ∈ X¬�}} = �[⨀�/2]�[N ] = �[N ]−1�[X �]
��1 = max{sup{Ψ(�) ∶ � ∈ X �}} = �[N ]−1�[X �]��0 = �[N ]−1�[X �].

This gives the inequalities:

�0 > �[N ]−1�[X �]�0 ≤ �[N ]−1�[X �]�1 ≥ �[N ]−1�[X �]0 < �0 ≤ �0 < �1 ≤ �1 ≤ 1.
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Any RealLife rule that satis昀椀es these will support the block organisation in an

empty environment.

To demonstrate the power of this method further, we can rewrite the inequalities in

Example 5 – assuming the general rule constraint – as �0 ≤ �[N ]−1�[X �] < �0 (we drop�1 since it is implied by �0 < �1 ≤ �1). Hence,

�[⨀�/2]�[N ] ∈ [�0, �0). (3.48)

It turns out that this is equivalent to the result Pivato proved for the existence still-lifes

(Pivato, 2007, Proposition 3.3). We thus have strong evidence that this derivation is ex-

haustive.

Example 6: The Blinker. The blinker graphon de昀椀ned in Example 2 has all X ∗�
non empty, resulting in the following parameters:

��0 = 316 ��0 = 316 ��1 = 12��0 = 38 ��0 = 38 ��1 = 12
This in turn gives rise to the family of rules that support the existence of a �×2�
blinker: (�, �0 = 316, �1 ≥ 12, �0 = 38, �1 ≥ 12) . (3.49)

If Example 6 can be proven as the necessary and su昀케cient conditions for the existence

of blinkers, then the autopoietic theory presented in this chapter o昀昀ers an alternative pos-

sibility to scaling emergent patterns from CAs into EAs and larger CAs that has not been

used in the literature on LtL and RealLife.
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Discussion

Autopoiesis, as a theory of biological identity, has the potential to transform how we con-

ceive of biological phenomena as whole. It o昀昀ers a perspective that distinguishes between

the possibilities for and the realisations of an organism. This in turn has implications for

how we ought to understand cognition as a matter of structural coupling constrained by

organisation; and for how we understand viability as the limits of structural possibility

determined by the organisation.

Cellular automata can serve as useful model universes in which ideas in theoretical

biology concerning emergent individuals can be tested by developing mathematical theory

in simple, concrete cases. Thus, a formalisation of autopoiesis in these universes is a good

昀椀rst step toward a more mature theory of biological identity.

In the preceding chapters, I sought to extend the autopoietic theory developed by Beer

for the GoL universe (Beer, 2004, 2014, 2015, 2020b; Beer, McSha昀昀rey, & Gaul, 2024)

to a larger neighbourhood generalisation, LtL, and its continuum limit, RealLife. I was

successful in this endeavour: I showed that the theory can be extended to larger neigh-
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bourhood individuals in LtL by computing their process dependency graphs and deriving

from this their cognitive domains and intrinsic viability constraints. Moreover, the way I

de昀椀ned these graphs is di昀昀erent than has appeared before, in order to allow for scaling to

RealLife, and this de昀椀nition introduced new complications. I also introduced the density

formulation of the viability constraint as a potentially more useful representation. Finally,

I developed a novel method for deriving rules from process dependency graphs such that

those rules allow the realisation of a reversible organisation in empty universes.

In RealLife, I de昀椀ned the autopoietic organisation of emergent individuals using graphons,

and showed that cognitive domains and viability constraints could be derived just the same

as in LtL. I also presented evidence that graphons are the appropriate limit object of se-

quences of process dependency graphs of increasing neighbourhood size, thus establish-

ing a continuity between the discrete and continuous theory. Finally, I extended the rule

derivation method to RealLife and showed that it is stronger in the continuous case.

4.1. Autopoiesis

The interpretation of autopoiesis I have formalised emphasises a number of key concepts.

First, both space and time are indispensable for autopoiesis to hold the theoretical power

it claims. Without de昀椀ning a reaction in LtL as a spatial arrangement of reactants, or

without the inherent spatial and temporal ordering of enabling relations, the derivation of

the cognitive domain would be impossible. The interactions a system can engage in cannot

be described without accounting for the spatiotemporal structure of the system and how

this structure creates an environment distinct from that system.

Second, the physical boundary is indispensable. It is the only way for the system to

distinguish itself from the environment and thus establish a distinct identity. For example,

consider a universe of all 1-components. If we ignored the boundary and only de昀椀ned an

individual by its 1-components, we could identity every individual at every point in space

simultaneously. Clearly, it does not make sense to talk about the interactions such an
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individual can engage in with its environment when it is not meaningfully distinct from

that environment. It is therefore imperative that any formalisation of autopoiesis include

a physical boundary such that a system can be usefully described as a cognitive system

acting in space as a distinct unity.

Third, the observer plays a signi昀椀cant role de昀椀ning the organisation of an individual.

As I discussed in Section 2.2, the organisation-structure duality implies an insu昀케ciency of

empirical observations in determining the organisation. If we again consider the glider, an

observation of any one of its reversible subgraphs is insu昀케cient to determine the full space

of its interaction. That is, such an observation could only determine a subset of the possible

concatenations of processes implied by the full organisation. It is up to the observer to

introduce additional criteria to expand from limited observations, including considerations

of symmetry, basins of attraction, etc. However, once the organisation is de昀椀ned, it fully

determines the space of its possible realisations. To be clear, the observer is still involved

in this determination to a certain extent, since this space only arises when the observer

considers the organisation in a particular context (e.g., its realisation in space). But this

context is minimal, as it is simply a matter of the organisation reducing the full space of

possibilities (every possible con昀椀guration of components) to the subset of those that realise

the organisation. And importantly, all information used in this reduction derives entirely

from the organisation through the implicit spatial embedding of its processes.

The observer-dependence of the organisation hints at a deeper aspect of autopoietic the-

ory (or at least in my interpretation): there is no metaphysical status granted to autopoietic

systems, or to any system whatever. This is a consequence of the enactive understanding

of experience as the epistemologically primary phenomenon. Thus, any notion of an exter-

nal world of objects is necessarily relative to an observer. More generally, all concepts are

interpretations of experience. Organisation is no di昀昀erent: the “correct” organisation to

describe an organism is whatever is most useful and satis昀椀es the scienti昀椀c norms of the

observer-community. This is not to say that the relation between organism and organisa-

tion is arbitrary, but that the way in which the organism constrains our description of it is
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decided by the observer-community. The GoL block organisation is clearly not a very good

model of E. coli because it is not very e昀昀ective at doing what we would want such a model

to do (predict behaviour, viability, etc.).1

4.1.1. Signi昀椀cance of the Formalism

It is worth further interrogating the signi昀椀cance of the degeneracies that arose in both LtL

and RealLife: there were processes that neither produced any components of the system,

nor had their center-components produced by any other process in the organisation, and

this lead to a failure of the cognitive domain derivation. This degeneracy, however, was

limited to reversible blinkers, and is therefore not a generic feature of the theory. It is also

dependent on some peculiarities of the chemistry, such as the immobility of components

and the immediate consumption of products, i.e., a product cannot move to become a reac-

tant in another process, or persist to become a reactant at a later time. It is thus unclear

what signi昀椀cance this degeneracy could have beyond LtL and RealLife. This problem can

also be avoided entirely, at least in the discrete case, by using the vertex-centric formula-

tion of process dependency graphs, since every relevant component would then be speci昀椀ed

by at least one process in the organisation.

The similarity between LtL and RealLife reduces the novelty of the latter with respect

to our understanding of autopoietic theory. That is, RealLife introduces nothing funda-

mentally new to address most of the abstract questions of autopoiesis. However, RealLife

is very informative of what a more sophisticated theory of autopoiesis might look like. For

instance, an organisation in continuous-time continuous-space universes would almost cer-

tainly have in昀椀nitely many processes; RealLife shows how one might handle that problem

while preserving representation independence. It also introduces measure equivalence in

almost every aspect of the theory, which is likely to generalise to more realistic models

(and especially continuous-time models). Furthermore, the convergence of LtL to RealLife

1Of course, the norms we use to evaluate a model are themselves maleable, and it is worth interrogating
whether they are su昀케cient to determine, say, what a proper theory of autopoiesis should look like. For instance,
we might want to consider whether a model is corroborated by phenomenological evidence, and this might help
to constrain the space of possible organisations that describe a system.
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demonstrates the possibility of a distinction between exact and approximate theories, and

how this might make a theory of autopoiesis both rigorous and practical. Finally, it gives

at least one example beyond the discrete case of what sort of calculations could be made

with autopoietic systems, and how to carry them out.

Most basically, this extension of autopoietic theory to RealLife suggests the possibility

of further extensions and establishes a blueprint for how to achieve them.

4.2. Cognition

The autopoietic perspective on cognition emphasises the co-dependence between an indi-

vidual and its environment in determining behaviour. Organisation does not dictate be-

haviour, but merely the possibilities thereof – it is only when coupled to an environment

does cognition really happen.

This perspective suggests a continuity in how we ought to understand cognition in

more complicated systems. That is, the basic ideas of structural coupling constrained by

organisation is universal to all behaving systems of interest to cognitive scientists. All

that changes from system to system, and from situation to situation, is the particular form

this coupling takes. Already we can see this in LtL by comparing a block to the glider. A

block can only engage in one possible interaction, or else its organisation disintegrates.

The glider, on the other hand, always has many interactive possibilities at any given mo-

ment. Depending on the dynamics of the environment, it can undergo di昀昀erent sequences

of structural transitions, which in turn reciprocally alter the dynamics of the environment

(Beer, 2020a).

This idea is also re昀氀ected in embodied and dynamical approaches to cognitive science,

and in particular the minimally cognitive behaviour research programme (Beer, 1995a,

1997, 2008; Favela, 2020). Here, cognitive behaviour is understood as structural coupling

between an agent, represented as a nonautonomous dynamical system, and its environ-

ment, which are together analysed as an integrated whole using the tools of Dynamical
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Systems Theory (Beer, 1995b; Gar昀椀nkel et al., 2017; Strogatz, 2024). The connection be-

tween this and the autopoietic theory presented in the preceding is, at least conceptually,

the derivation of the cognitive domain. That is, an interaction graph can be interpreted

as a nonautonomous dynamical system where the state space is the set of unique struc-

tures, and the possible evolutions of the system are described by the edges. A theory of

autopoiesis then serves as a foundation to a theory of cognitive behaviour, where the latter

is concerned with the structural coupling of a given system, and the former is concerned

with the emergence of that system and how its organisation determines the possibilities

for structural coupling.

The structure-organisation distinction also allows us to talk both about behaviour as

it is realised, and about the perspective of the individual as it behaves. In the context

of LtL and RealLife, this amounts to a distinction between the interaction graph and a

path through it. The former describes all the ways that the environment is relevant to

the individual by partitioning the space of perturbations according to how the individual

responds to them. In some sense, then, every perturbation “looks a certain way” to the

individual since it will respond to every perturbation of the same class in exactly the same

manner. For instance, the � = 5 blinker presented in Chapter 2 has an interaction graph

with three distinct perturbation classes: GRAY, ORANGE, and GREEN. Every perturbation that

does not destroy the blinker must fall into one of these classes. We can therefore recast

structural coupling in terms of these classes, and thus describe the world of the blinker as

it unfolds from its own perspective (Beer, 2014).

In this way, the interaction graph can be interpreted as a formal description of the

Umwelt of an individual (von Uexküll, 1934/1992) – what the world is like from its own

perspective. This points at a broader theme: experience can be understood in terms of the

distinctions a system makes (Gaul & Izquierdo, 2025). By mapping out these distinctions in

the cognitive domain, the observer gains the ability to simultaneously consider and mediate

between the environment an organism is situated in, and the world that the organism

brings forth through structural coupling (Varela, 1997; Varela et al., 2017).
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4.3. Viability

The core di昀昀erence between the formulation of viability presented in Chapters 2 and 3

(and in Beer, McSha昀昀rey, and Gaul, 2024) and the formulation of viability following Ashby

(1960) amounts to the distinction between intrinsic and extrinsic viability constraints. Ex-

trinsic constraints are imposed on a pregiven system by the observer, such that a system

is considered non-viable only insofar as its state exceeds the bounds set by the observer –

the system need not even be capable of disintegration. In contrast, an intrinsic constraint

is derived from the organisation of a (precarious) system and is thus only dependent on the

observer insofar as its identity as an individual is so dependent.

This core distinction gives rise to many interesting di昀昀erences between the formula-

tions of viability. For one, the concept of essential variables is complicated by the fact

that an autopoietic system in LtL or RealLife may depend on components in the environ-

ment to constitute itself at the next step – the essential variables of the system are not

restricted to just the components and processes contained within its boundary. Moreover,

what variables are essential will change over time, according to the structure of the sys-

tem. Another di昀昀erence arises from how the boundary of the constraint is de昀椀ned. In the

intrinsic constraint, the boundary is de昀椀ned as the con昀椀gurations that contain a realisa-

tion of the organisation and a terminal perturbation to it; in an extrinsic constraint, it is

de昀椀ned simply as the boundary of the states chosen by the observer. Extrinsic constraints

therefore permit states at the boundary to be non-terminal (an important feature in via-

bility decomposition: McSha昀昀rey and Beer, 2023). The basis of this di昀昀erence lies in what

is constrained in either case: an extrinsic constraint sets bounds on the states (structures)

of a system, whereas an intrinsic constraint sets bounds on both structures and structural

transitions – an intrinsic constraint is a constraint on behaviour. Thus, while it may make

sense to talk about how changes to the dynamics of a system change its behaviour at the

boundary of viability in the extrinsic case, such questions are trivial in the intrinsic case:

the behaviour is always the same (i.e., terminal).
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This is not to say that intrinsic constraints are necessarily superior, nor that they cap-

ture everything that an extrinsic constraint can. It would therefore be interesting to see

what could be done to bring the two approaches together. One option could be to apply

viability decomposition to an intrinsic constraint by adding a topology derived from a sys-

tem’s possible trajectories of structural coupling (Beer, 2020a). With this, trajectories that

never reach the boundary are classi昀椀ed as asymptotically viable, while those that eventu-

ally terminate are transiently viable (McSha昀昀rey & Beer, 2022; McSha昀昀rey & Beer, 2023).

Note that this would still result in many key di昀昀erences. For example, a trajectory couldn’t

approach the boundary and not be terminal since the topology is de昀椀ned not by the space

of structures, but by structural coupling.

4.4. Adaptivity and Sense-making

The intrinsic formulation of viability immediately present problems for the operational-

isation of adaptivity (Di Paolo, 2005, 2009). Speci昀椀cally, Di Paolo (2005, p. 438) de昀椀nes

adaptivity as

A system’s capacity, in some circumstances, to regulate its states and its relation

to the environment with the result that, if the states are su昀케ciently close to the

boundary of viability,

1. Tendencies are distinguished and acted upon depending on whether the

states will approach or recede from the boundary and, as a consequence,

2. Tendencies of the 昀椀rst kind are moved closer to or transformed into ten-

dencies of the second and so future states are prevented from reaching the

boundary with outward velocity.

That is, a system is adaptive if it can sense the limits of its viability and accordingly alter its

behaviour so as to avoid its internal state approaching those limits too closely. The problem-

atic points here are “sensing the limits of viability” and “accordingly alter its behaviour.”
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With respect to the 昀椀rst, a system may not have access to the information necessary to

determine the limits of viability. For example, any autopoietic system in LtL – unless it

is a still-life – is dependent on components in its 2-environment in every structural tran-

sition. Such a system is therefore incapable of determining whether it is in the boundary

of its constraint (a terminal environment), or in the interior. With respect to the second

problematic point, an intrinsic constraint necessarily captures all possible behaviour of a

system, as implied by its organisation. Therefore, even if we grant that a system can deter-

mine whether it is in the boundary of the viability constraint, or even its distance from that

boundary, it would be impossible for it to change that fact, since any such change would

already be accounted for. In other words, an adaptive system does not change its trajectory

with respect to the limits of viability, but is in an adaptive trajectory from the start.

The source of these problems lies in the implicit decomposition of an autopoietic system

into “regulator,” on the one hand, and “the system,” on the other. It only makes sense to

talk about a system changing its trajectory with respect to the viability constraint if some

of its components are ignored when describing the constraint. But what motivates such

a decomposition? If it is simply a matter of explaining the role some mechanism plays

in the behaviour of the system, then it is misleading to talk about the constraint of the

subsystem as the constraint. This is not to say that such a decomposition could not be

useful, but that our explanatory needs as observers are independent of the organisation

and should therefore not determine its viability.

The consequence of all this is that adaptivity only makes sense as a particular class

of behaviour: when a system avoids situations that we, as observers, determine it would

otherwise lose viability in. This de昀氀ation of adaptivity eliminates the particular opera-

tionalisation of “graded norms” that Di Paolo (2005) sought. There is no sense in which a

system can be close or far from the limits of its viability without such distance correspond-

ing precisely to the actual lifetime of the system. Moreover, it is not enough to say that a

system can use proxies to the viability constraint, and that this is su昀케cient to recover a

graded normativity intrinsic to the system. Again, the full viability constraint is something
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that only an observer has access to, and any connection made between a component of the

system and its viability constraint is strictly mediated by the observer – our explanatory

needs should not be confused with the actual operation of the system.

This is not to say that one cannot talk about situations being better or worse for a

system, nor that a system cannot make a distinction between the two, but that such a

distinction is strictly a behavioural phenomenon, independent of the context we put it in.

In other words, notions of “good” or “bad,” insofar as they are scienti昀椀cally useful, are proper

to the cognitive domain of an individual and its structural coupling.

If we can no longer use the stronger notion of adaptivity, what of its supposed implica-

tions for normativity, agency, teleology, intentionality, sense-making, and so on? Properly

addressing these issues requires a deeper engagement with the phenomenological liter-

ature surrounding adaptivity and enaction (Di Paolo, 2005; Jonas, 2001; Merleau-Ponty,

1942/1963, 1945/2010; Thompson, 2007; Varela et al., 2017; Weber & Varela, 2002), and so

I do not pursue this here. However, I will o昀昀er a sketch of what an alterative grounding of

some of these concepts might look like.

To begin, it will be useful to layout in more concrete terms what adaptivity hoped to

achieve. It’s primary aim was to establish a bridge from autopoiesis to sense-making, as

proposed by Weber and Varela (2002) (Di Paolo, 2005, p. 430). Sense-making is understood

to be the instauration of a meaningful perspective on the world, and meaningful in a nor-

mative sense: things in the world are good or bad with respect to the continued autopoiesis

of the system. Thus, this is supposed to explain fatigue and illness as states that are bad

for the system, with respect to its intrinsic norm (Di Paolo, 2005, p. 440). Adaptivity is also

meant to distinguish between systems that are acted upon by the environment, and agents

that have an asymmetric interactive relation to their surroundings by modulating those

very interactions. Lastly, a system’s intrinsic normativity is taken to imply an intentional-

ity whereby the system is always directed toward some future bene昀椀cial situation (or away

from a deleterious one).

Taking these in order, I will start with sense-making. The establishment of a per-
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spective follows simply from autopoiesis: the system partitions all perturbations by how it

responds to them, thus picking out what is relevant to it. The question for sense-making

then becomes whether such a perspective is necessarily meaningful. If we broaden our

sense of what makes something meaningful beyond strictly good or bad with respect to

autopoiesis, then any perspective is inherently meaningful. Speci昀椀cally, a perturbation is

meaningful in precisely the way it is situated within the cognitive domain of the system.

For instance, any BLUE perturbation on the glider is meaningful for it as a BLUE perturba-

tion. This means that the sense in which something is meaningful need not be intuitive to

the observer. Practically, we can only understand the meaning something has for a system

by considering that thing in the context of the system’s way of life.2 Thus, although being

maladaptive is properly a concern of the observer (by situating behaviour in the context

of viability outcomes), it can still makes sense to talk about a situation as bad from the

perspective of the system. For example, E. coli understands low nutrient concentrations as

bad because it avoids those situations.

An important point about this notion of a meaningful perspective is that it is non-

teleological.3 “Good” and “bad” are abstractions from the behaviour of a system, and need

not correspond to any objective feature of it. This is not to say that value is somehow

“not real,” but that its reality is grounded in the way of life brought forth by a system in

structural coupling. For example, we say injury is bad, not because there is some inherent

feature of the experience of pain that says “this is bad,” but because we tend to avoid injury

(Wittgenstein, 1953/2009). Note that the cognitive domain is still essential here. Without

it, a behavioural mimic would satisfy this notion of value just as well. Avoidance only makes

sense as a possible action given by the cognitive domain.

This same argument can be applied to illness and fatigue: they are bad because we

avoid or seek to remedy them. To make this clearer, consider the experience of color, a key

example in the original statement of enaction (Varela et al., 2017). According to enaction,

2This is analogous to Wittgenstein’s 1953/2009 idea that the meaning of a word is revealed by the use to
which it is put in the context of a language-game: the language used in a particular pragmatic situation.

3It is worth mentioning that Ashby (1960) was emphatic that his notion of ultrastability, similar to adap-
tivity, was non-teleological.
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the experience of color is something we bring forth through our responses to variations in

frequency of light (Varela et al., 2017, chap. 8). Importantly, nothing here requires that

this experience correspond to something within the system. We must therefore ask why it

is necessary for the experience of value to be operationalised as distance from a viability

boundary (something apparently intrinsic to the system), but color can be explained as

simply emergent from structural coupling. This hints at a problem with Di Paolo’s (2005,

2009) naturalisation of normativity in being implicitly representational, which is in direct

tension with the tenets of enaction that it is supposed to support (Barrett, 2017).

The concept of asymmetric interaction between an agent and its environment is only

explained by adaptivity through its dependence on the implicit decomposition discussed

above. If we can only consider whole systems in structural coupling with their environ-

ment, there is no room for any added regulation of interaction since this would already

be a part of the ongoing structural coupling. However, there is something to the intuition

of asymmetry here: there is a di昀昀erence between a system passively absorbing whatever

nutrients are around it, and a system actively seeking nutrients out. Perhaps this intu-

ition can be captured in the following way: a system is an asymmetric interactive relation

with its environment to the extent that the modes of structural coupling it engages in are

sensitive to changes in internal state. For example, an E. coli can change between running

and tumbling due simply to its internal state (Sourjik & Wingreen, 2012). In contrast,

an immotile bacterium would be incapable of such a change, irrespective of its internal

state. Clearly, this conception of asymmetry depends on a more rigorous notion of what

constitutes a “mode of structural coupling.” But if one can make this notion rigorous, then

it should be possible to apply this to dynamical models and compare the extent to which

di昀昀erent systems have interactive asymmetries.

Finally, I come to intentionality. If we are concerned only with intentionality as the

directness toward a virtual future, it is unclear what this means without imposing a tele-

ology. However, there is still a sense in which an autopoietic system is directed in its

experience through the distinctions it makes in its cognitive domain. That is, an autopoi-
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etic system is always oriented toward its future by acting upon the distinctions it makes

in the world. In fact, an autopoietic system must, by de昀椀nition of the cognitive domain,

act upon its distinctions. The question then becomes whether this notion of intentionality

is su昀케cient to explain experience. This I am unsure of, and, again, a proper treatment of

this issue requires a deeper engagement with the phenomenological tradition that takes

us beyond my immediate concerns here. What I provide here is simply a sketch, not a fully

developed account of the connection between autopoiesis and enaction. Moreover, such an

account cannot be properly developed simply through philosophical discussion, but requires

further theoretical development in more realistic models.

It is now worth re-interrogating whether autopoiesis, on its own, is su昀케cient for what

adaptivity is supposed to explain. I think it is su昀케cient for sense-making as a meaningful

perspective on the world, even if this meaning is not obvious to us. However, it is not

su昀케cient for interactive asymmetry. Whether it is su昀케cient for the valence in the sense

of good/bad depends on what one means by those terms. My intuition is that nothing can

be said about this in general, as what “good” or “bad” mean will always be relative to a

particular system and the sort of life it lives. Again, good/bad need not be an objective

feature of living systems, but rather something they bring forth through their emergent

subjectivity.

4.5. Future Directions

There are many possible extensions that can be explored in LtL and RealLife. Most obvious

would be to generalise Beer’s work on structural coupling and the origins of autopoiesis in

GoL (Beer, 2020a, 2020c). Another option could be to explore di昀昀erent sets of structures

besides those that occur in a vacuum (for example, the intermediate block con昀椀guration

in Figure 2.7). One could also make some the results I presented more rigorous by, for

instance, proving the convergence of process dependency graphs, or proving the su昀케ciency

of the rule derivation procedures. There are also some of the problems I left unresolved that
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may yet have solutions: degenerate organisations, assumption of vacuum perturbations

in rule derivations, exhaustive LtL rule derivations, multigraphs in RealLife, topological

assumption in non-reversible RealLife organisations, etc.

However, it may be more productive to move on to di昀昀erent model universes with more

realistic features. As noted above with respect to the degeneracies of process dependency

graphs, there are some peculiar features of the LtL and RealLife chemistries: the immobil-

ity of components and the immediate consumption of products. Relatedly, there is also no

di昀昀usion in these chemistries. There are thus a number of possible extensions that include

some of these phenomena, including Lattice Gas Automata and Lattice Boltzmann mod-

els (Wolf-Gladrow, 2000). Moreover, these have a proven continuum limit in Navier-Stokes

equations (Frisch et al., 1986; Krüger et al., 2017). These models also have the advantage

of being common tools in physics with many guidelines and rigorous results for them.

More broadly, a mathematical theory of autopoiesis has many potential applications.

There is obvious biomedical relevance in being able to predict what perturbations will

most e昀昀ectively destroy a cell. Similarly, being able to 昀椀nd perturbations to manipulate

organisms is of relevance to bioengineering. Molecular biology would also bene昀椀t from an

autopoietic perspective by revealing the signi昀椀cance particular components have for the

persistence of an organism’s organisation. Ethology and cognitive science could also ben-

e昀椀t from a more embodied dynamical perspective on agent-environment interaction, as

has been argued extensively elsewhere (Beer, 1995a, 2023; Favela, 2020; Thelen & Smith,

1994; Varela et al., 2017).

***

An autopoietic perspective on life and cognition has the potential to transform how we

think about both the scope and depth of biological phenomena as a whole. To fully realise

this potential, rigorous theories need to be developed in iteratively complexi昀椀ed models,

stepping toward a mature theory of autopoiesis in our own universe. My work here has
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merely been a small step in this direction.



Appendix A

Definitions and Algorithms

Throughout the main text of this thesis, I have left many statements unsubstantiated, or

else imprecise, for sake of clarity. The following seeks to remedy this by providing formal

de昀椀nitions and arguments. In other words, this appendix is for the mathematician and

pedant.

Section A.1 describes the theory for LtL, and Section A.2 RealLife. Section A.3 de-

scribes the connection between the two that shows the LtL theory to be an approximation

of the RealLife theory. Between the 昀椀rst two sections, I use much of the same notation for

slightly di昀昀erent objects that nonetheless serve the same role. Some of these objects will

need to be distinguished more carefully in Section A.3.

There are a few other abuses of notation to note. First, I will often add or subtract

sets and scalars to mean applying that arithmetic to every element of the set: A + � ={� + � ∶ � ∈ A }. Second, if a function is, strictly speaking, set-valued, but I have some

guarantee that the elements of that set (or their images) are all the same, then I will often

treat the function as if its value was one of those elements, since how one choses an ele-
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ment would then not matter. Third, I will usually suppress dependence on the parameters

(�, �0, �0, �1, �1) and � to simplify notation.

Finally, Section A.1 describes LtL as a proper theory in its own right of a discrete uni-

verse. It is not until Section A.3 that I will treat it as an approximate theory of autopoiesis

in RealLife.

A.1. Larger than Life

Let M ∶= {0, 1} and let be the set of possible cell states. A universe state function is a

function u ∶ ℤ� → M . We denote the space of all universe states U ∶= M ℤ�. Let the

neighbourhood be a set N ∶= {� ∶ ||�||� ≤ �} centred at the origin, where � ∈ ℕ is a 昀椀nite

neighbourhood radius.

Let �(�) ∶= |N |−1
1N (�) be a convolution kernel. The density function Ψ ∶ ℤ� → [0, 1]

is de昀椀ned as a convolution, giving the average value about a point �:

Ψ(�) ∶= (� ∗ u)(�) = |N |−1 ∑�∈N

u(� − �)�[��] (A.1)

A �-dimensional Larger than Life cellular automaton (Evans, 2001, 2003) is a functional� ∶ U → U , de昀椀ned

�[u](�) ∶= u(�)1[�0, �1] (Ψ(�)) + (1 − u(�))1[�0, �1] (Ψ(�)) , (A.2)

where 0 ≤ �0 ≤ �0 ≤ �1 ≤ �1 ≤ 1. Thus a LtL rule can be fully speci昀椀ed by a 5-tuple(�, �0, �0, �1, �1) and a choice of �-norm.

It will be useful to de昀椀ne a few additional sets and functions. Let ��[u](�) ∶= u(�−�)
be a functional that translates state functions by some � ∈ ℤ�. Let E(A ) ∶= (⋃�∈A

N +�)\S give the 1-environment of A ⊂ ℤ�. We get the �-environment by recursion: E�.

With a slight abuse of notation, we will similarly use E�(s) to denote the set of functions

over E�(A ) that are equal over A .
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A.1.1. Autopoiesis

De昀椀nition A.1 (Processes). A process in Larger than Life is a tuple � = (�,p) where� ⊆ N + � for some 昀椀nite � ∈ ℤ2, and p ∶ � → M is well-de昀椀ned over �. Two processes,(��,p�) and (��,p�), are chemically equivalent if, when translated to the origin (� ↦ �−�):

1. (Equivalence of space) �� = ��,
2. (Equivalence of state) supp(p�) ∩ �� = supp(p�) ∩ ��.
3. (Equivalence of type) p�(0⃗) = p�(0⃗).

De昀椀nition A.2 (Structures). Let S ⊂ ℤ� be a 昀椀nite, connected set and let s ∈ U be a

function well-de昀椀ned over S . Then (S , s) is a valid structure if | supp(s) ∩ S | > 0 and

S = ⋃�∈supp(s) N + �. Two structures (S�, s�) and (S�, s�) are equivalent if they are

translationally symmetric, that is, if there exists some � ∈ ℤ� such that S� + � = S� and�� ∘ s� = s�.
De昀椀nition A.3 (Process Dependency Graph). Let � be an arbitrary 昀椀nite set and � ∶=
N × M 2 a set of edge labels, where � = (�, �0, �1) ∈ �. Let ��, ��0, and ��1 give the

component of the edge label corresponding to the subscript. Let � be a set of triples (�, �, �)
where �, � ∈ � and � ∈ �. Finally, let � ∶ � → � give the � component of the edge and

let � ∶ � → � give the � component. Then the multidigraph � = (�,�, �, �) is a valid

process dependency graph if the following conditions are satis昀椀ed, where �� = (��,p�) is

the process associated with the vertex �:
1. (Full Enablement) For every � ∈ �, there exists a (⋅, �, �) ∈ � for each �� ∈ ��.
2. (Consistent Enablement) For every � ∈ �, p�(� ∈ ��) = � i昀昀 � = ��1 for all (⋅, �, �) ∈� where �� = �, or � = ��0 for all (�, ⋅, �) where �� = � = 0⃗. And for every � ∈ �, �0 is

constant for all (�, ⋅, (⋅, �0, ⋅)) ∈ �
3. (Connectivity) � is weakly connected.
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� is reversible when, for every � ∈ � and � ∈ N such that ∃(⋅, �, (�, ⋅, ⋅)) ∈ �, there is

exactly one such edge.� is closed when, for every � ∈ �, there exists an (�, ⋅, ⋅) ∈ � and an (⋅, �, ⋅) ∈ �.� is degenerate if there exists some � ∈ � such that there is no (�, ⋅, ⋅) ∈ � and no(⋅, �, (0⃗, ⋅, ⋅)) ∈ �. Any such � is corresponds to a degenerate process with respect to the

organisation.

Processes are represented implicitly here, but they can be extracted from the edges.

Let the center-component of a process � ∈ � be the unique �0 such that (�, ⋅, (⋅, �0, ⋅)) ∈ �.

The state � of the � ∈ N component of �� is given by any edge (�, ⋅, (�, ⋅, �)) ∈ �.

De昀椀nition A.4 (Autopoiesis). A process dependency graph � (De昀椀nition A.3) is autopoietic

if there exists a partition {��} of � such that every �� satis昀椀es the following conditions:

1. There exists a bijection �� ∶ �� → S� such that (S�,p� −1� (0⃗)) is a valid structure.

2. (S�, s�) can be expressed as the union of translated processes in ��.
3. There exists �� such that for some u ∈ E(s�) and a LtL rule, �[u]∣

S�+� = ��∘s�, where� = ��(��)−��(��) such that �� ∈ ��, �� ∈ ��, and ∃(��, ��, �) ∈ � with �� = 0⃗. Let D�� =
S� ∩(S� +�). Then for every ��(��) ∈ D��, ∃(��, ��, �) ∈ � with �� = ��(��)− ��(��)− �
for all �� such that ��(��) + � ∈ (N + ��(��)) ∩ (S� + �).

4. There exists �� such that (3) is satis昀椀ed where �� and �� are swapped.

The network as a whole must also be such that all (��, ��, �) ∈ � satisfy ��(��) ∈ D�� and�� = ��(��) − ��(��) − ��� for some ��, �� valid according to condition (3).

According to this de昀椀nition, then, an autopoietic process dependency graph implies a

closed network of structures and every enabling relation participates in some transition

between structures. Note that the graph itself need not be completely closed. It is possible

to prune from the network those processes that do not enable any other process and still

recover complete structures where they are implicit (assuming the graph is not degenerate).
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However, this would require a more complicated statement that combines conditions (1)

and (2), or else replace conditions (1)-(4) with “must derive a closed network of structure

transitions” using the procedure outlined in Section A.1.2. As such, I will use the simpler

de昀椀nition of autopoiesis.

We can guarantee that only boundary processes are degenerate in autopoietic organi-

sations, due to the light cone constraint (condition (3) in De昀椀nition A.4). This implies that,

in any valid transition, the 1-environment cannot produce any 1-components that consti-

tute the system, since then the boundary of the subsequent structure would exceed the

light cone of the initial structure, which is not allowed. Thus, every 1-component must

be produced directly by the processes realising the initial structure, meaning the center-

component of the corresponding process in the subsequent structure is always directly en-

abled, i.e., it is not degenerate.

A.1.2. The Cognitive Domain

First, we must de昀椀ne the symmetries of a structure as a dihedral group of degree 4 and

order 8, �8, when the dimension of the LtL universe is � = 2. This group can be generated

by two functionals representing rotations, r, and re昀氀ections (昀氀ips), f. To de昀椀ne these, I

assum that structures are always normalised. Let ( ̃S , ̃s) denote the normalised form of a

structure: ̃S ∶= S − � and s̃ ∶= �−� ∘ s, where

� = ⟨ min {� ∶ ∃ � s.t. ⟨�, �⟩ ∈ S }−max {� ∶ ∃ � s.t. ⟨�, �⟩ ∈ S } − min {� ∶ ∃ � s.t. ⟨�, �⟩ ∈ S }2 ,
min {� ∶ ∃ � s.t. ⟨�, �⟩ ∈ S }−max {� ∶ ∃ � s.t. ⟨�, �⟩ ∈ S } − min {� ∶ ∃ � s.t. ⟨�, �⟩ ∈ S }2 ⟩.
Then

f[s̃](�) ∶= s(⟨−�0, �1⟩) (A.3)

r[s̃](�) ∶= s(⟨||�||2 cos(�2 + tan−1 �1�0) , ||�||2 sin(�2 + tan−1 �1�0)⟩) (A.4)
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generates the group ℜ = ⟨{f, s}⟩, which is isomorphic to �8. Thus, two structures (S�, s�)
and (S�, s�) are symmetric if for some � ∈ ℜ, � ∘ s̃� = ̃s�.
De昀椀nition A.5 (Interaction Graph). Let S be a set of normalised structures and let T be

a set of triples (��, ��, �) where ��, �� ∈ S and � ∈ ℤ�. Let � ∶ T → S, � ∶ T → S,

and � ∶ T → C, where C is an arbitrary 昀椀nite set. Then the C-decorated multidigraph

I = (S, T , �, �, �) is the interaction graph of an autopoietic process dependency graph �
when:

1. S satis昀椀es conditions (1)–(4) in De昀椀nition A.4 for every (S , s) ∈ S with respect to �;

2. T gives all (��, ��, ⋅) that satisfy condition (3) for �;

3. Let ��, �� ∈ S be structures. If �(� ∈ T ) = �, then �(�′) = � i昀昀 there exists some 昀椀xed� ∈ ℜ such that � ∘ s� = s′�, � ∘ s� = s′�, and �(�) = �(�′).

The procedure for deriving an interaction graph from an autopoietic process depen-

dency graph is fairly involved. First, we need a way to extract forward fragments from a

given process. I will represent fragments as pairs �� = (��, ⃗��), where �� ∶ � → F� ∪ {0} is

a map from vertices to a set of coordinates F� ⊂ ℤ� or 0, and

⃗��(�) ∶= ⋃�∈� ←� ���(�) ∘ p�(�). (A.5)

Then Algorithm 1 can be used to derive a set of fragments enabled by a given process. By

taking the forward fragments of every process in a graph, we can merge them all until

we get a full set of process embeddings that correspond to structures (Algorithm 2). To

get the edges of the interaction graph, we need an algorithm that derives T from a set of

normalised process embeddings � and a dependency graph � (Algorithm 3). An embedding

is normalised by simply centring the codomain of �� about 0⃗ (or any other 昀椀xed reference

point). Getting the source and target maps is straightforward given our representation of

edges: �(� ∈ T ) = �� and �(� ∈ T ) = ��, where �� gives �� from (��, ��, �) ∈ T , and similarly
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Algorithm 1 LtL Fragment Extraction Algorithm
Require: � = (�,�, �, �) is a process dependency graph (De昀椀nition A.3) and � ∈ � where{(�, ⋅, ⋅) ∈ �} is non-empty.�� ← {(�, ⋅, ⋅) ∈ �}� ← {(��,p�) ∶ (�, �, (0⃗, ⋅, ⋅)) ∈ ��} s.t. ��(�) = 0⃗

for all � ∈ N \{0⃗} do
for all � ∈ � do

for all �� ∈ {�� ∶ (�, �, (�, ⋅, ⋅)) ∈ �� \,�� ∉ supp(�)} do⃗�′ ← ⃗� ∪ (�−� ∘ p�)
if ⃗�′ is well-de昀椀ned, � −1(−�) is not de昀椀ned, and ∃� ∈ supp(� ) s.t. −�−� (�) =�1 − �2 where (�, �, (�1, ⋅, ⋅)), (�, �, (�2, ⋅, ⋅)) ∈ � for some � ∈ � then� (�) ← −�
end if

end for
end for

end for
for all � ∈ N \{0⃗} do

for all � ∈ � do
for all �� ∈ {�� ∶ (�, �, (�, ⋅, ⋅)) ∈ �′ \昀氀atten(�)} do⃗�′ ← ⃗� ∪ (�−� ∘ p�)

if ⃗�′ is well-de昀椀ned and � −1(−�) is not de昀椀ned then� (��) ← −�
end if

end for
end for

end for
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Algorithm 2 LtL Process Embedding Algorithm
Require: � = (�,�, �, �) is a process dependency graph (De昀椀nition A.3) and �� is the set

of fragments extracted from a given � ∈ � using Algorithm 1.� ← ⋃�∈� ��� ← ∅� ← ∅
for all �� ∈ � do

if �� ∉ � then� ← � ∪ {��}� ← �∪ {��}� ← 0
while � < |�\�| do

if ∃� ∈ supp(��) s.t. � ∈ supp(��) then� ← ��(�) − ��(�)� ← �∪ {��}��(�) ← ��(�) ∪ ��(� − �)� ← 0
end if

end while
end if

end for

Algorithm 3 LtL Edge Derivation Algorithm
Require: � = (�,�, �, �) is a process dependency graph (De昀椀nition A.3) and � is a set of

normalised process embeddings derived from � using Algorithm 2.
T ← ∅
for all (��, ��) ∈ �2 do�′ ← {(�, �, (0⃗, ⋅, ⋅)) ∈ � ∶ ��(�) ≠ 0, ��(�) ≠ 0}

T ← T ∪ { ̃��(�) − ̃��(�) ∶ (�, �, (0⃗, ⋅, ⋅)) ∈ �′}
end for
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for ��. The 昀椀nal step is to get the edge label map �, which an be derived by considering

symmetries between structures, with some additional complications to account for edges

that di昀昀er only by translation (Algorithm 4).

Algorithm 4 I Edge Labelling
Require: S is a set of normalized structures and T is a set of transition between between

structures.
C′ ← some 昀椀nite set s.t. |C′| = |T |
Let � ∶ T → C′ be a bijection
used ← ∅
for all �, �′ ∈ T 2 do

used ← used ∪ {�}
if ∄(�′�, ⋅, �′) ∈ T ), �′ ∉ Used, and sym?(�, �′) then�(�′) ← �(�)

used ← used ∪ {�′}
end if

end for
C ← �→(T )

The function sym? ∶ T 2 → Boolean is true when there exists some � ∈ ℜ such that� ∘ s� a.e.= s′� and � ∘ �� ∘ s� a.e.= ��′ ∘ s′�.
In summary, then, an interaction graph I� = (S, T , �, �, �) can be derived from a

process dependency graph � in the following steps:

1. Derive a set of process embeddings � from � using Algorithms 1 and 2.

2. Normalise every � ∈ �.

3. Get S by replacing � with F (its codomain) for every ( ⃗�, � ) ∈ �.

4. Get T from � and � using Algorithm 3.

5. Get � and � from the edge representation of T .

6. Get � from S and T using Algorithm 4.
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A.1.3. The Intrinsic Viability Constraint

State Formulation

De昀椀nition A.6 (Intrinsic Viability Constraint). Let � be an autopoietic process dependency

graph by De昀椀nition A.4 with an interaction graph I� = (S, T , �, �, �) (De昀椀nition A.5). Then

V� ∶= ⋃(��, ��, �)∈T

{u∣
E2(S�) ∈ U ∶ u∣

S� = s�, �[u]∣
S�+� = �� ∘ s�} (A.6)

is the intrinsic viability constraint of �, given some 昀椀xed LtL rule. The boundary of the

constraint is de昀椀ned as the set of con昀椀gurations that destroy the system:

�V� ∶= ⋃�∈S

{u∣
E2(S ) ∈ V� ∶ u∣

S
= s, ∄(�, �′, �) ∈ T (�[u]∣

S ′+� = �� ∘ s′)} (A.7)

Density Formulation

First, we de昀椀ne a function that gives constraints on Ψ given a source and target function:

Γ[u�,u�+1](�) =
⎧{{{{{{⎨{{{{{{⎩

[�0, �1] u�(�) = 0 ∧ u�+1 = 1[0, 1]\[�0, �1] u�(�) = 0 ∧ u�+1 = 0[�0, �1] u�(�) = 1 ∧ u�+1 = 1[0, 1]\[�0, �1] u�(�) = 1 ∧ u�+1 = 0.
(A.8)

We will also want a way to represent the set of density functions that satisfy a given con-

straint:

D[Γ](A ) ∶= {Ψ∣
A

∶ Ψ(�) ∈ Γ(�)∀� ∈ A } . (A.9)
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Finally, we need the multidimensional discrete-domain Fourier transform (DTFT) and its

inverse:

F[� ](�) ∶= ∑�∈ℤ� � (�)�−�⟨�⋅�⟩ (A.10)

F−1[� ](�) ∶= ( 12�)� ∫[−�,�]� � (�)��⟨�⋅�⟩ �[��] (A.11)

where ⟨� ⋅ �⟩ denotes the inner product ∑��=1 ����.
Conjecture A.1 (Density Formulation of Viability). Let � be an autopoietic process de-

pendency graph by De昀椀nition A.4 with an interaction graph I� = (S, T , �, �, �). Let

D�� ∶= D[Γ[s�, �� ∘ s�]](S� ∩ (S� + �))�[� ] ∶= F−1 [F[� ]
F[�]] .

Then, given a 昀椀xed LtL rule,

V′� ∶= ⋃(��, ��, �)∈T

⋃Ψ∈D�� {u∣
E(S�+�) = �[Ψ′] ∶ Ψ′ ∈ D[Γ[�[Ψ],�� ∘ s�]](S� + �)}

(A.12)

is equivalent to the viability constraint de昀椀ned in De昀椀nition A.6 when each u ∈ V′ is taken

to imply a set of functions over E2(S�) equal over the domain of u.

The titular point of this conjecture is �, which is a bijection from density functions

over some set A to universe state function over E(A ). Such a bijection is guaranteed to

exist by the Convolution Theorem (Oppenheim & Schafer, 2010, p. 60) for the DTFT which

states that, for any two absolutely summable discrete signals � and � (i.e., functions with∑ℤ� |�| < ∞; Oppenheim and Schafer, 2010, pp. 49–50),

F[� ∗ �] = F[�]F[�].
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Applying this to the our case, both � and any u ∈ U over a 昀椀nite domain are absolutely

summable: � is an indicator function of a 昀椀nite set, and we are only considering universe

state functions restricted to 昀椀nite sets (we can set u(�) = 0 for all � not in the set). Thus,

we get

F[Ψ] = F[� ∗ u] = F[�]F[u].
Some basic algebra and an inverse Fourier transform gets us

u = F−1 [F[Ψ]
F[�] ] . (A.13)

This means that every Ψ over a set A implies a unique function u over E(A ).

The density formulation allows us to de昀椀ne two metrics of density functions with re-

spect to a process dependency graph �.

De昀椀nition A.7 (Transition Metric). The transition metric, assigning a value to how well

a density function Ψ satis昀椀es the density bounds implied by the structural transition from

s� to �� ∘ s�, is de昀椀ned:

��[Ψ](�) ∶= inf {|Ψ(�) − �| ∶ � ∈ Γ[s�, �� ∘ s�](�)} . (A.14)

Note that Γ may in part depends on Ψ, by virtue of Ψ being used to extend s� over all

of S�. One could thus use �� over S� ∩ S� with a 昀椀xed Γ, and then extend the metric over

S�.
De昀椀nition A.8 (Viability Metric). The viability metric, assigning a value to how close a

density function is to corresponding to any viable structural transition from ��, is de昀椀ned:

�V[��,Ψ](�) ∶= min {��[Ψ](�) ∶ � = (��, ⋅, ⋅) ∈ T } (A.15)

Much like the previous metric, Γ can only be 昀椀xed over some intersection with S�. And

again, a choice of Ψ can extend the metric over a larger region. Note that �V = 0 does not
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imply �� = 0, since the parts of �V that are satis昀椀ed may correspond to di昀昀erent Γ. Thus,�V = 0 does not mean that a perturbation is actually viable, but that it satis昀椀es the bounds

of at least one transition at every point.

A.1.4. Rule Derivations

Section A.1.3 assumed a 昀椀xed LtL rule (�, �0, �1, �0, �1). However, it is possible to derive

a set of rules under which an organisation can be realised, assuming it is reversible. The

following procedure is non-exhaustive: for certain organisations, there may be rules that

support it but are do not satisfy the constraints derived from the procedure.

The set of rules can be implicitly speci昀椀ed by an 8-tuple (��0 , ��0 , ��1 , ��1 , ��0 , ��1 ), where

��0 <�0 ≤ ��0 (A.16)��1 ≤�1 < ��1 (A.17)��0 <�0 ≤ ��0 (A.18)��1 ≤�1 < ��1 (A.19)0 < �0 ≤ �0 ≤ �1 ≤ �1 ≤ 1. (A.20)

Note that this last constraint is a modi昀椀cation of the general LtL rule constraint: here,�0 > 0 must be true in order for vacuums to be possible.

To get values for these parameters, we 昀椀rst partition � into four sets:

X � ∶= {�� ∶ p�(0⃗) = 0 ∧ ∃(�, ⋅, �) ∈ �(��1 = 1)} (A.21)

X¬� ∶= {�� ∶ p�(0⃗) = 0 ∧ ∃(�, ⋅, �) ∈ �(��1 = 0)} (A.22)

X � ∶= {�� ∶ p�(0⃗) = 1 ∧ ∃(�, ⋅, �) ∈ �(��1 = 1)} (A.23)

X¬� ∶= {�� ∶ p�(0⃗) = 1 ∧ ∃(�, ⋅, �) ∈ �(��1 = 0)} . (A.24)

I am assuming here that, for every � ∈ �, ��1 is constant over all (�, ⋅, �) ∈ �. This is

implied by the interaction graph property discussed above.
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Since I am only considering vacuum perturbations, we can de昀椀ne Ψ over a partial

process by assuming that for every �, p(�) = 0 for all � ∈ �. Then the parameters are

de昀椀ned

��0 ∶= min{Ψ(0⃗) ∶ � ∈ X �} (A.25)��0 ∶= max{Ψ(0⃗) ∶ Ψ(0⃗) < ��0 , � ∈ X¬�} (A.26)��1 ∶= max{Ψ(0⃗) ∶ � ∈ X �} (A.27)��1 ∶= min{Ψ(0⃗) ∶ Ψ(0⃗) > ��1 , � ∈ X¬�} (A.28)��0 ∶= min{Ψ(0⃗) ∶ � ∈ X �} (A.29)��0 ∶= max{Ψ(0⃗) ∶ Ψ(0⃗) < ��0 , � ∈ X¬�} (A.30)��1 ∶= max{Ψ(0⃗) ∶ � ∈ X �} (A.31)��1 ∶= min{Ψ(0⃗) ∶ Ψ(0⃗) > ��1 , � ∈ X¬�} , (A.32)

These de昀椀nitions need some quali昀椀cations. If any of the values do not exist (i.e., when one

of the sets X is empty), they can be ignored in the above inequalities. If such a parameter

is needed to compute another one, more care is needed. When X � is empty, ignore the ��0
constraint in the de昀椀nition of ��0 ; ��1 can be ignored entirely. Otherwise, one can safely

ignore the constraint in a parameter de昀椀nition when that constraint is unde昀椀ned.

The logic of this is grounded in the following. First, X¬� must always contain a partial

process that produces a 0-component due to being su昀케ciently below the �0 boundary. This

is an assumption that is not always necessary, but making it allows the calculations to

be made (it also corresponds to a condition that is necessary in Section A.2.4). Second, ��1
only exists when there are process that remain o昀昀 due to su昀케ciently high Ψ. I assume that

such process can only exist when X � is non-empty: that there must be an intermediate Ψ
that results in a production process between a Ψ above and below [�0, �1]. Again, this is

not strictly necessary in LtL, but corresponds to a necessary condition in RealLife. Finally,

I assume that X � is non-empty.

This procedure should only derive rules that support the realisation of an organisation
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as some periodic LtL pattern. When any of the sets X do not exist, the procedure may not

be exhaustive. However, in the more general case where they do exist, I conjecture that this

procedure will derive all and only those LtL rules that support the asymptotic realisation

of an organisation in a vacuum universe. Stated more formally:

Conjecture A.2 (Su昀케ciency of the LtL Rule Derivation). Let � = (�,�, �, �) be a re-

versible autopoietic process dependency graph.

I. All rules that satisfy the constraints derived by the procedure just described are such

that, for every (��, ��, �) ∈ T : �[s�] = �� ∘ s� (A.33)

where s(�) = 0 for all � ∉ S .

II. When X �, X¬�, X �, and X¬� all exist, the set of rules that satisfy the derived con-

straints contains every rule such that, for every (��, ��, �) ∈ T , Equation A.33 is true.

A.2. RealLife

Let M ∶= {0, 1} and let � be the �-dimensional Lebesgue measure on ℝ�. A universe state

function is a Borel-measurable function u ∶ ℝ� → M . We denote the space of all universe

states U ∶= M ℝ� ⊂ L∞(ℝ�, �). Let the neighbourhood be a set N ∶= {� ∶ ||�||� ≤ �}
centred at the origin, where � ∈ ℝ+ is a 昀椀nite neighbourhood radius.

Let �(�) ∶= �[N ]−1
1N (�) be a convolution kernel. The density function Ψ ∶ ℝ� →[0, 1] is de昀椀ned as a convolution, giving the average value about a point �:

Ψ(�) ∶= (� ∗ u)(�) = �[N ]−1 ∫�∈N

u(� − �)�[��] (A.34)

A �-dimensional RealLife Euclidean automaton (Pivato, 2007) is a functional � ∶ U → U ,

de昀椀ned �[u](�) ∶= u(�)1[�0, �1] (Ψ(�)) + (1 − u(�))1[�0, �1] (Ψ(�)) , (A.35)
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where 0 ≤ �0 ≤ �0 < �1 ≤ �1 ≤ 1. Thus a RealLife rule can be fully speci昀椀ed by a 5-tuple(�, �0, �0, �1, �1) and a choice of �-norm.

It will be useful to de昀椀ne a few additional sets and functions. Let ��[u](�) ∶= u(�−�)
be a functional that translates state functions for some � ∈ ℝ�. Let E(A ) ∶= ⋃�∈�A

N +�
give the set A ⊂ ℝ� and its 1-environment. We get the �-environment by recursion: E�.

With a slight abuse of notation, we will similarly use E�[s] to denote the set of functions

over E�(A ) that are equal over A . Finally, let N�� ∶= {� ∶ ||�||� < �, � ∈ ℝ�} be the open

neighbourhood about the origin.

A.2.1. Autopoiesis

De昀椀nition A.9 (Processes). A process in RealLife is a tuple (�,p) where � ⊆ N + � for

some 昀椀nite � ∈ ℝ2, and p(�) is almost well-de昀椀ned over �. Two processes, (��,p�) and(��,p�), are chemically equivalent if, when translated to the origin (� ↦ �− �):

1. (�-equivalence of space) �[��\��] = �[��\��],

2. (�-equivalence of state) ess supp(p�) ∩ �� = ess supp(p�) ∩ ��.
3. (Equivalence of type) p�(0⃗) = p�(0⃗).

De昀椀nition A.10 (Structures). Let S ⊂ ℝ� be a 昀椀nite, closed, and connected set and let

s ∈ U be a function well-de昀椀ned for almost all � ∈ S . Then (S , s) is a valid struc-

ture if �[supp(s)] > 0, S = ⋃�∈ess supp(s) N + �, and s(�) = 0 for almost all � ∈
S ∩ ⋃�∈�S

N�� + �. Two structures (S�, s�) and (S�, s�) are equivalent if they are al-

most translationally symmetric, that is, if there exists some � ∈ ℝ� such that S� + � a.e.= S�
and �� ∘ s� a.e.= s�.

With these, we can now de昀椀ne an autopoietic system as a class of process dependency

networks by specifying the conditions that such a network must satisfy to be autopoi-

etic. The following de昀椀nition combines and adapts various de昀椀nitions from the theory of

graph limits, including graphons on probability spaces (Lovász, 2012, p. 217), �-graphons

(Lovász, 2012, p. 322), and digraphons (Boeckner, 2013, pp. 14–15, 32–36).
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De昀椀nition A.11 (Process Dependency Graphon). Let � = (Ω,A, �) be a probability space

and � ∶= N × M 2 a compact Hausdor昀昀 space. Let � ∶ � × � → ℙ(�0) be a function

measurable with respect to the completion of the sigma-algebra A × A, where ℙ(A ) is the

space of probability measures over the set A . Let ��0 give the �0 (source) and ��1 give the �1
(target) M component for all � ∈ �; let �� give the N component. Then � is a valid process

dependency graphon if, for every � ∈ Ω:

1. The codomain of � is the codomain of some bijection � ∶ �0 → ℙ(�0);

2. ��1 is constant over all � ∈ {� ∶ (�−1 ∘ �)�(�, �) = ��} for every 昀椀xed �� where �−1 ∘�(�, �) ∈ �;

3. ��0 is constant over all � where �−1 ∘ �(�, �) ∈ �; and

4. For every � ⊆ Ω with 0 < �[�] < �[Ω],∫�×(Ω\�) (1� [(�−1 ∘ �)(�1, �2)] + 1� [(�−1 ∘ �)(�2, �1)])��1��2 > 0. (A.36)

Two process dependency graphons are equivalent if there exists a measure-preserving bijec-

tion � ∶ Ω� → Ω� such that for all �, � ∈ Ω�, �(�, �) a.e.= �(� (�), � (�)).� is closed if, for every � ∈ Ω, there exists both a � ∈ Ω such that �−1 ∘ �(�, �) ∈ � and

a �′ ∈ Ω such that �−1 ∘ �(�, �) ∈ �.� is reversible if, for every � ∈ Ω and � ∈ N where there exists some � such that�−1 ∘ ��(�, �) = �, there is only one such �.� is degenerate if there exists some � ∈ Ω such that (i) there is no � where �−1∘��(�, �) =0⃗, and (ii) there is no �′ where �−1 ∘ �(�, �) ∈ �.

Thus, process dependency kernels are directed �0-graphons. Equation A.36 is an adap-

tation of the connectivity of symmetric kernels (Lovász, 2012, p. 122) to de昀椀ne weakly con-

nected process dependency networks.

Here, Ω represents the set of processes in the network and � represents the space of

enabling relations as a triple (�, �0, �1) of the center-component �0 of the source process,
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the component produced �1, and the position � of the produced component in the target

process; 0 ∈ �0 is the lack of such a relation. � is a function that assigns such relations to

pairs of processes. The use of probability measures is needed in Section A.3, but it will in

general be more useful to deal with � ∶= �−1 ∘ �.

The reader will notice the use of equivalence up to measure. This is because the Real-

Life universe has subsets of zero measure, but Ψ is only e昀昀ected by measurable sets, and

so any subset of zero measure cannot in昀氀uence dynamics outside that set. In other words,

any modi昀椀cation to a structure that is equivalent up to measure will have e昀昀ectively the

same dynamics. I therefore do not consider these structural variations worth representing

in the graphon: only a single representative from an equivalence class of structures needs

to be derived from the graphon in order for it to specify all possible structural realisations

of itself.

Processes are implicit in this de昀椀nition, but can still be extracted. Given an � ∈ Ω,�� = {��(�, �) ∶ � ∈ Ω}. To get p�, we 昀椀rst need to de昀椀ne an inverse: ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖��(�) ∶= {� ∶��(�, �) = �}. Then p�(�) = ��1(⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖��(�), �) ∪ ��0(�, ⋅), which is guaranteed to be consis-

tently de昀椀ned by condition (2) of De昀椀nition A.11.

Finally, we can specify when a process dependency graphon is autopoietic.

De昀椀nition A.12 (Autopoiesis). A process dependency graphon � is autopoietic if there exists

a partition {��} of Ω such that every �� satis昀椀es the following conditions:

1. There exists a bijection �� ∶ �� → S� such that (clℝ2S�,p� −1� (⟨0, 0⟩)) is a valid struc-

ture.

2. (S�, s�) can be expressed as the union of translated processes in ��.
3. There exists �� such that for some u ∈ E[s�] and a RealLife rule, �[u]∣

S�∩(S�+�) =�� ∘ s�, where � = ��(��) − ��(��) such that �� ∈ ��, �� ∈ ��, and ��(��, ��) = 0⃗. Let

D�� = S� ∩ (S� +�). Then for every ��(��) ∈ D��, ��(��, ��) = ��(��) − ��(��) − � for all�� such that ��(��) + � ∈ (N + ��(��)) ∩ (S� + �).

4. There exists �� such that (3) is satis昀椀ed where �� and �� are swapped.
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The network as a whole must also be such that all ⟨��, ��⟩ ∈ supp(�) satisfy ��(��) ∈ D��
and ��(��, ��) = ��(��) − ��(��) − ��� for some ��, �� valid according to condition (3).

According to this de昀椀nition, then, an autopoietic process dependency graphon implies

a closed network of structures and every enabling relation participates in some transition

between structures. Note that the graphon itself need not be completely closed, but that

every component that constitutes the individual at some point is speci昀椀ed by the network.

It may be possible to prune from the network those processes that do not enable any other

process and still recover complete structures where they are implicit (as can be done quite

easily in the discrete case). However, this would require a more complicated statement

that combines conditions (1) and (2), or else replace conditions (1)-(4) with “must derive a

closed network of structure transitions” using the procedure outlined in Section A.2.2. As

such, I will use the simpler de昀椀nition of autopoiesis.

A.2.2. The Cognitive Domain

Given that I am considering only autopoietic systems with 昀椀nitely many structures, the

proper object to describe the cognitive domain is an interaction graph: a digraph with

structures as vertices and transition vectors as edges.

First, we must de昀椀ne the symmetries of a structure as a dihedral group of degree 4

and order 8, �8. This group can be generated by two functionals representing rotations,

r, and 昀氀ips, f. To de昀椀ne these, we need to normalise structure representations. Let ( ̃S , ̃s)
denote the normalised representation of a structure such that ̃S ∶= S −� and s̃ ∶= �−� ∘s,

where

� = ⟨ inf {� ∶ ∃ � s.t. ⟨�, �⟩ ∈ S }−sup {� ∶ ∃ � s.t. ⟨�, �⟩ ∈ S } − inf {� ∶ ∃ � s.t. ⟨�, �⟩ ∈ S }2 ,
inf {� ∶ ∃ � s.t. ⟨�, �⟩ ∈ S } − sup {� ∶ ∃ � s.t. ⟨�, �⟩ ∈ S } − inf {� ∶ ∃ � s.t. ⟨�, �⟩ ∈ S }2 ⟩.
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Then

f[s̃](�) ∶= s(⟨−�0, �1⟩) (A.37)

r[s̃](�) ∶= s(⟨||�||2 cos(�2 + tan−1 �1�0) , ||�||2 sin(�2 + tan−1 �1�0)⟩) (A.38)

generates the group ℜ = ⟨{f, s}⟩, which is isomorphic to �8. Thus, two structures (S�, s�)
and (S�, s�) are symmetric if for some � ∈ ℜ, � ∘ s̃� = ̃s�.
De昀椀nition A.13 (Interaction Graph). Let S be a set of structures and let T be a set of triples(��, ��, �) where ��, �� ∈ S and � ∈ ℝ2. Let � ∶ T → S, � ∶ T → S, and � ∶ T → C, where

C is an arbitrary 昀椀nite set. Then the C-decorated multidigraph I = (S, T , �, �, �) is an

interaction graph of an autopoietic process dependency graphon � when:

1. S satis昀椀es conditions (1)–(4) in De昀椀nition A.12 for every (S , s) ∈ S with respect to �;

2. T gives all (��, ��, ⋅) that satisfy condition (3) for �;

3. Let ��, �� ∈ S be structures. If �(� ∈ T ) = �, then �(�′) = � i昀昀 there exists some 昀椀xed� ∈ ℜ such that � ∘ s̃� = s̃′�, � ∘ ̃s� = s̃′�, and �(�) = �(�′).

Given an autopoietic process dependency graphon �, an interaction graph I� can be

derived using Algorithm 5. However, we will need to de昀椀ne a few things 昀椀rst.

Let ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗��(�) ∶= {� ∶ ��(�, �) = �}. Then we de昀椀ne a forward fragment of a process � as a

pair ( ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗F�, ⃗⃗ ⃗⃗ ⃗⃗F�), where:

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗F� ∶= ⋃�∈N

� ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗��(�) − � (A.39)

⃗⃗ ⃗⃗ ⃗⃗F� ∶= ⋃�∈N

�−� ∘ p ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗��(�). (A.40)

Note that this function is not well-de昀椀ned, since it is possible to have some �1, �2 ∈ Ω
such that ��1(�, �1) ≠ ��1(�, �2) while ��(�, �1) = ��(�, �2). We will therefore want a

way to get multiple functions from ⃗� so that each is well-de昀椀ned. It is unclear to me how to
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do this in general, or whether such is possible without assuming a topology on Ω. However,

we can specify a partition on � (and, thus, an induced topology) that allows us to separate

these fragment functions with 昀椀nite indices. Such a partition, {O�}, must be such that it

is 昀椀nite and for every � ∈ Ω:

1. If ��(�, �1) = ��(�, �2) and �1 ≠ �2, �1 ∈ �� and �2 ∈ ��, where � ≠ �,
2. For any pair �1, �2 ∈ �� such that ��(�, �1) = �1, ��(�, �2) = �2, and �1 ≠ �2,

p�1(� − �1) = p�2(� − �2) for all � ∈ (��1 + �1) ∩ (��2 + �2),

3. ∣{� ∶ �(�, �) ≠ 0, � ∈ ��}∣ = max {∣��(�, �)∣ ∶ � ∈ Ω},

and similarly for ��(⋅, �). We will say that if a graphon � has such a partition, Ω has the

fragment partition topology. It turns out that this partition separates processes by what

structure they belong to, since the relation of belonging to the same fragment is transitive.

However, no topology is assumed within a given partition, so work still needs to be done to

recover the structural realisations of �. In any case, I have tried to minimise dependence

on the partition by not assuming that two fragment belong to the same set until such can

be shown independent of the partition.

We can thus rede昀椀ne forward fragments:

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗F�,� ∶= ⋃�∈N

� ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗��(�)∩�� − � (A.41)

⃗⃗ ⃗⃗ ⃗⃗F�,� ∶= ⋃�∈N

�−� ∘ p ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗��(�)∩��. (A.42)

When a partition is not speci昀椀ed, we get a set of functions {F�} such that for every �, there

exists � ∈ �� where �(�, �) ≠ 0.

We will need to keep track of a well chosen set of points in each fragment. Let �� ∈ �
be a set of pairs (�′ ∈ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗F�, �″ ∈ Ω) for the fragment ⃗��. Algorithm 5 will show how to get

this set, but it will require another bit of machinery: Let K ⊂ �N be a set of vectors such

that K is 昀椀nite and ⎛⎜⎝ ⋃�∈K

N + �⎞⎟⎠\ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗F ≠ ∅.
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We will also need to use a metric for how well a fragment matches with a structure. Let⃗�� be a fragment and �� be a structure (a completed fragment). Then de昀椀ne the fragment-

structure match between ⃗�� and �� as:

�� [ ⃗��, ��] = ⃗⃗⃗⃗⃗⃗F�∣
S�∩( ⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗F�+�) − s∣

S�∩( ⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗F�+�) = 0, (A.43)

where � ∈ ℝ� is some displacement vector for the fragment into the structure. To de-

termine whether ⃗�� and �� can be merged, we will need to determine whether they share

a process. Let M( ⃗��, ��) be a boolean function that indicates whether there is a shared

process. That is, it will displace all �′ ∈ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗F� by �, where ��[ ⃗��, ��] = 0, and similarly

for all (�′�, ⋅) ∈ �� and (�′�, ⋅) ∈ �� (if there is no � such that �� = 0, M is false). Then,

if there exists some (�′, �″) ∈ �� and (�′, �″) ∈ �� such that there is some � ∈ Ω with��(�, �″) −��(�, �″) = �′ − �′, M is true.

Finally, we will need to de昀椀ne a terminating condition. Let � denote a set of fragments

and let �∗ ⊆ � denote the subset of complete fragments (i.e., structures by De昀椀nition A.10).

Then, if for any ⃗�� ∈ �∗ there is some ⃗��, with (⋅, �) ∈ �� such that there does not exist a⃗�� ∈ �∗ where M( ⃗��, ⃗��) is true, then the algorithm continues. Let ��(�,�) denote the

boolean value of the terminating condition (where false means the algorithm continues).

With simple modi昀椀cations to Algorithm 5, an algorithm for non-reversible organisa-

tions can be de昀椀ned, assuming those organisations have the fragment partition topology.

Note that there are obvious ine昀케ciencies in this algorithm, but it will complete in 昀椀nite

time so long as the derivation is possible.

Using Algorithm 5, we can derive an interaction graph from an autopoietic process de-

pendency graphon �. All that is left to do is de昀椀ne I in terms of �, �, and �. First and

most simply, S = {( ̃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗F , ̃⃗⃗ ⃗⃗ ⃗⃗F) ∶ ( ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗F , ⃗⃗ ⃗⃗ ⃗⃗F) ∈ �}; coordinates in � should also be shifted accord-

ingly. Then, for each �� ∈ S, extract the forward fragments of every �″� where (�′�, �″� ) ∈ ��.
For each such fragment, if �� = 0 for some �� ∈ S, add (��, ��, �′� − �′�) to T (without du-

plicates) where ��(�″� , �″� ) = 0⃗ and (�′�, �″� ) ∈ ��. To get the source and target maps, let
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Algorithm 5 RealLife Structure Derivation for Reversible Organisations
Require: � is autopoietic by De昀椀nition A.12 and reversible.�0 ← some �0 ∈ Ω s.t. �(�, �) ≠ 0 for all � ∈ � where �[�] > 0.⃗�� ← ⃗��0� ← { ⃗��}�� ← {(0⃗, ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗� 0⃗(�0))}� ← {��}

while ��(�,�) is false do
if ⃗�� satis昀椀es De昀椀nition A.10 then� ← � s.t. (0⃗, �) ∈ �� and ¬M( ⃗��, �) for all � ∈ �� ← � ∪ ⃗��� ← � ∪��⃗�� ← ⃗���� ← ��
else� ← ⋃(�′,�″)∈�� {(��, �′ + �) ∈ Ω ∶ �(��, �″) = (⋅, ⋅, −�), � ∈ K}�� ← �� ∪ ⋃(��,��)∈� (��, ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗� 0⃗(��))⃗�� ← ⃗�� ∪ ⋃(��,��)∈� ( ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗F�� + ��, ��� ∘ ⃗⃗⃗⃗ ⃗⃗F��)
end if

end while

�(� ∈ T ) = �� and �(� ∈ T ) = ��, where �� gives �� from (��, ��, �) ∈ T , and similarly for ��.
Algorithm 4 describes the procedure for deriving an appropriate � ∶ T → C. The func-

tion sym? ∶ T 2 → Boolean is true when there exists some � ∈ ℜ such that � ∘ s̃� a.e.= ̃s′� and� ∘ �� ∘ s� a.e.= ��′ ∘ s′�. Finally, we get the C-decorated multidigraph I� = (S, T , �, �, �).

I end this section with two conjectures claiming that, on the basis of Algorithm 5 and

the procedures just described, one can always derive an interaction graph from an autopoi-

etic graphon � whenever fragments can be separated.

Conjecture A.3 (Constitutive-Interactive Relation). Let � be an autopoietic process de-

pendency graphon by De昀椀nition A.12. Then an interaction graph I� (De昀椀nition A.13) can

be derived from it when, for all � ∈ Ω, there is a derivable partition {��} of ⋃�∈N
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗��(�)

such that |{��}| = max{|⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗��(�)| ∶ � ∈ N } and

⃗��(�) = ⋃�∈�� p�(�)
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is well-de昀椀ned for every ��.

Conjecture A.4 (Su昀케ciency of the Fragment Partition Topology). Let � be an autopoi-

etic process dependency kernel by De昀椀nition A.12. Then an interaction graph I� (De昀椀ni-

tion A.13) can always be derived using Algorithm 5 whenever � has the fragment partition

topology. That is, an autopoietic process dependency graphon with the fragment partition

topology satis昀椀es the conditions of Conjecture A.3.

A.2.3. The Intrinsic Viability Constraint

State Formulation

De昀椀nition A.14 (Intrinsic Viability Constraint). Let � be an autopoietic process depen-

dency kernel by De昀椀nition A.12 with an interaction graph I� = (S, T , �, �, �) (De昀椀ni-

tion A.13; Conjecture A.3). Then

V� ∶= ⋃(��, ��, �)∈T

{u∣
E2(S�) ∈ U ∶ u∣

S� a.e.= s�, �[u]∣
S�+� a.e.= �� ∘ s�} (A.44)

is the intrinsic viability constraint of �, given some 昀椀xed RealLife rule. The boundary of

the constraint is de昀椀ned:

�V� ∶= ⋃�∈S

{u∣
E2(S ) ∈ V� ∶ u∣

S

a.e.= s, ∄(�, �′, �) ∈ T (�[u]∣
S ′+� a.e.= �� ∘ s′)} (A.45)
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Density Formulation

First, we de昀椀ne a function that gives constraints Ψ given a source and target function:

Γ[u�,u�+1](�) =
⎧{{{{{{⎨{{{{{{⎩

[�0, �1] u�(�) = 0 ∧ u�+1 = 1[0, 1]\[�0, �1] u�(�) = 0 ∧ u�+1 = 0[�0, �1] u�(�) = 1 ∧ u�+1 = 1[0, 1]\[�0, �1] u�(�) = 1 ∧ u�+1 = 0.
(A.46)

We will also want a way to represent the set of density functions that satisfy a given con-

straint:

D[Γ](A ) ∶= {Ψ∣
A

∶ Ψ(�) ∈ Γ(�)∀� ∈ A } . (A.47)

Finally, we need the multidimensional Fourier transform and its inverse for functions in

L1(ℝ�) (i.e., absolutely integrable functions: ∫ℝ� |� | ≤ ∞):

F[� ](�) ∶=∫ℝ� � (�)�−�⟨�⋅�⟩ �[��] (A.48)

F−1[� ](�) ∶= lim�→0 1(2�)� ∫ℝ� � (�)��⟨�⋅�⟩��(�) �∏�=1 ��� (A.49)

where ⟨� ⋅ �⟩ denotes the inner product ∑��=1 ���� and ��(�) ∶= exp(−�||�||22) is a cuto昀昀

function (Folland, 1992, p. 244).

Now we can state the following conjecture:

Conjecture A.5 (Density Formulation of Viability). Let � be an autopoietic process de-

pendency graphon by De昀椀nition A.12 with an interaction graph I� = (S, T , �, �, �) (De昀椀-

nition A.13; Conjecture A.3). Let

D�� ∶= D[Γ[s�, �� ∘ s�]](S� ∩ (S� + �)) (A.50)�[� ] ∶= F−1 [F[� ]
F[�]] . (A.51)
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Then, given a 昀椀xed RealLife rule,

V′� ∶= ⋃(��, ��, �)∈T

⋃Ψ∈D�� {u∣
E(S�+�) a.e.= �[Ψ′] ∶ Ψ′ ∈ D[Γ[�[Ψ],�� ∘ s�]](S� + �)}

(A.52)

is equivalent to the viability constraint de昀椀ned in De昀椀nition A.14 when each u ∈ V′ is

taken to imply a set of functions over E2(S� + �) equal over the domain of u.

The titular point of this conjecture is �, which is (almost) bijection from density func-

tions over some set A to universe state function over E(A ). However, establishing that

such a bijection exists is non-trivial. Fortunately, we can use on results from Fourier anal-

ysis to get us most of the way. Speci昀椀cally, we need to use the Convolution Theorem and

the Fourier Inverse Theorem. The Convolution Theorem states that, for any two functions� , � ∈ L1:

F[� ∗ �] = F[� ]F[�]. (A.53)

This clearly applies to � and u ∈ U , as both are in L1, assuming that u has 昀椀nite support

(Folland, 1992, Theorem 7.8). The Fourier Inverse Theorem states that, for any � ∈ L1:

� a.e.= F−1[F[� ]] (A.54)

(Folland, 1992, p. 244). Thus, we get

F[� ∗ u] = F[�]F[u], (A.55)

which by simple algebra and an inverse Fourier transform will give Equation A.51. There

is one problem with this claim, however: the Fourier transforms given above are de昀椀ned

over ℝ�, but in our application here, we are dealing with functions over 昀椀nite domains

(u over E(A ) and Ψ over A ). While we can assume these functions are are zero every-

where outside of their domain, this changes their Fourier transforms, which is potentially

problematic for Equation A.51. We therefore require that any extensions of Ψ beyond its
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domain in A results in the same � restricted to E(A ). Stated more rigorously, I make the

following general claim:

Claim. Let � and � be subsets of ℝ� with non-zero Lebesgue measure, and let �̃� ∶=∪�∈�� + �. Let � ∈ L1(ℝ�) be function such that �(�) = 0 for almost all � ∉ �. Then for

every � , � ′ ∈ L1(ℝ�) such that � (�) a.e.= � ′(�) over �,

F−1[F[� ]/F[�]]( ̃�) = F−1[F[� ′]/F[�]]( ̃�), (A.56)

for almost all ̃� ∈ �̃�.

Unfortunately, I am not aware of any proofs for this speci昀椀c claim, but given that Ψ =� ∗ u can only be de昀椀ned over A if u is de昀椀ned over E(A ), and that the inverse relation

holds in the in昀椀nite domain case, it does not appear that this claim is unreasonable.

The density formulation allows us to de昀椀ne two metrics of density functions with re-

spect to a process dependency graphon �.

De昀椀nition A.15 (Transition Metric). The transition metric, assigning a value to how well

a density function Ψ satis昀椀es the density bounds implied by the structural transition from

s� to �� ∘ s�, is de昀椀ned:

��[Ψ](�) ∶= inf {|Ψ(�) − �| ∶ � ∈ Γ[s�, �� ∘ s�](�)} . (A.57)

Note that Γ may in part depends on Ψ, by virtue of Ψ being used to extend s� over all

of S�. One could thus use �� over S� ∩ S� with a 昀椀xed Γ, and then extend the metric over

S�.
De昀椀nition A.16 (Viability Metric). The viability metric, assigning a value to how close a

density function is to corresponding to any viable structural transition from ��, is de昀椀ned:

�V[��,Ψ](�) ∶= min {��[Ψ](�) ∶ � = (��, ⋅, ⋅) ∈ T } (A.58)

Much like the previous metric, Γ can only be 昀椀xed over some intersection with S�. And
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again, a choice of Ψ can extend the metric over a larger region. Note that �V = 0 does not

imply �� = 0, since the parts of �V that are satis昀椀ed may correspond to di昀昀erent Γ. Thus,�V = 0 does not mean that a perturbation is actually viable, but that it satis昀椀es the bounds

of at least one transition at every point.

A.2.4. Rule Derivations

Section A.2.3 assumed a 昀椀xed RealLife rule (�, �0, �1, �0, �1). However, it is possible to

derive a set of rules under which an organisation can be realised, assuming it is reversible

and all perturbations in the interaction graph correspond to an empty universe.

The set of rules can be implicitly speci昀椀ed by an 8-tuple (��0 , ��0 , ��1 , ��0 , ��0 , ��1 ), where

��0 <�0 ≤ ��0 (A.59)��1 ≤�1 < ��1 (A.60)��0 <�0 ≤ ��0 (A.61)��1 ≤�1 < ��1 (A.62)0 < �0 ≤ �0 < �1 ≤ �1 ≤ 1. (A.63)

To get values for these parameters, we 昀椀rst partition the points in S� ∩ (S� + �) for

each � = (��, ��, �) ∈ T into four sets:

X �� ∶= {� ∈ S� ∩ (S� + �) ∶ s�(�) = 0 ∧ s�(�) = 1} (A.64)

X¬�� ∶= {� ∈ S� ∩ (S� + �) ∶ s�(�) = 0 ∧ s�(�) = 0} (A.65)

X �� ∶= {� ∈ S� ∩ (S� + �) ∶ s�(�) = 1 ∧ s�(�) = 1} (A.66)

X¬�� ∶= {� ∈ S� ∩ (S� + �) ∶ s�(�) = 1 ∧ s�(�) = 0}. (A.67)

I am assuming here that, for every � ∈ Ω, ��1(�, �) is either constant or unde昀椀ned over

all � ∈ Ω. This is implied by the interaction graph property discussed above.

Since I am only considering vacuum perturbations, we can de昀椀ne Ψ over all of S by
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assuming that s(�) = 0 for all � ∉ S . Then the parameters are de昀椀ned

��0 ∶= min {inf {Ψ(�) ∶ � ∈ X �� } , � ∈ T } (A.68)��0 ∶= max {sup {Ψ(�) < ��0 ∶ � ∈ X¬�� } , � ∈ T } (A.69)��1 ∶= max {sup {Ψ(�) ∶ � ∈ X �� } , � ∈ T } (A.70)��1 ∶= min {inf {Ψ(�) > ��1 ∶ � ∈ X¬�� } , � ∈ T } (A.71)��0 ∶= min {inf {Ψ(�) ∶ � ∈ X �� } , � ∈ T } (A.72)��0 ∶= max {sup {Ψ(�) < ��0 ∶ � ∈ X¬�� } , � ∈ T } (A.73)��1 ∶= max {sup {Ψ(�) ∶ � ∈ X �� } , � ∈ T } (A.74)��1 ∶= min {inf {Ψ(�) > ��1 ∶ � ∈ X¬�� } , � ∈ T } (A.75)

(A.76)

These de昀椀nitions need some quali昀椀cations, however. If any of the values do not exist (i.e.,

when one of X is empty), they can be ignored in the above inequalities. If such a parameter

is needed to compute another one, more care is needed. When X � is empty, ignore the ��1
constraint in the de昀椀nition of ��0 ; ��1 can be ignored entirely. Otherwise, one can safely

ignore the constraint in a parameter de昀椀nition when that constraint is unde昀椀ned.

The logic of this is grounded in the following. First, X¬� must always contain a partial

process that produces a 0-component due to being su昀케ciently below the �0 boundary. This

is always true since all viable con昀椀gurations have �-wide boundaries; thus, in a vacuum,Ψ = 0 for all processes in �S . This then means that ��0 must always exist. Second, sinceΨ is continuous with respect to space (the convolution of two bounded functions is always

continuous), Ψ > �1 only if X �� is non-empty: there must be an intermediate Ψ between

those above and below [�0, �1]. Finally, I assume that X �� is always non-empty.

This procedure should only derive rules that support the realisation of an organisation

as some periodic LtL pattern. I conjecture that this procedure will derive all and only

those RealLife rules that support the realisation of a reversible organisation in a vacuum
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universe. Stated more formally:

Conjecture A.6 (Su昀케ciency of the RealLife Rule Derivation). Let � be an autopoietic

graphon whose interaction graph I� = (S, T , �, �, �) implies a reversible dynamics: each

vertex has exactly one outgoing edge and exactly one incoming edge.

I. All rules that satisfy the constraints derived by the procedure just described are such

that, for every (��, ��, �) ∈ T : �[s�] a.e.= �� ∘ s� (A.77)

where s(�) = 0 for all � ∉ S .

II. The set of rules that satisfy the derived constraints contains every rule such that, for

every (��, ��, �) ∈ T , Equation A.77 is true.

A.3. Larger than Life as an Approximation to RealLife

Pivato (2007, Theorem 2.1) proved that large-radius LtL automata are good approxima-

tions to RealLife. This section lays out some of the machinery needed to show that process

dependency graphons (De昀椀nition A.11) are an appropriate limiting object for sequences

of increasing large process dependency graphs (De昀椀nition A.3). Thus, this section shows

that the autopoietic theory developed in LtL is a good approximate theory for autopoiesis

in RealLife.

This section depends on results in Graph Limit Theory (Boeckner, 2013; Lovász, 2012;

Lovász & Szegedy, 2010) for the converge of dense graph sequences. We can quickly verify

that, at least for the block, process dependency graphs are dense. The density of a digraph� = (�,�) can be computed as |�||�|(|�| − 1). (A.78)

We can attain simple formulas for the number of vertices and edges in �∗ block organisa-
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tions:

|�(��∗)| = (3�∗ + 1)2 (A.79)|�(��∗)| = (1 + 4�∗ + 5(�∗)2)2. (A.80)

We can then compute the limit of the density of block organisations:

lim�∗→∞ (1 + 4�∗ + 5(�∗)2)2(3�∗ + 1)2((3�∗ + 1)2 − 1) = 2581. (A.81)

Thus, block organisations are dense.

To show the converge of process dependency graphs to graphons, we 昀椀rst need to rep-

resent process dependency graphs using a RealLife neighbourhood. If � is a �∗-decorated

digraph of �∗, it can be converted to a �-decorated digraph by scaling the neighbourhood

relations of every edge by ��∗ , where � is a RealLife neighbourhood radius. That is, for

every edge decoration in the graph, (�, ⋅, ⋅) ↦ (� ��∗ , ⋅, ⋅).

Let Q denote the set of functions � ∶ � → ℝ. Let ���(��) give the decoration the graph� assigns to the edge ��. Then the homomorphism density of a Q-decorated graph � into a�-decorated graph ��∗ is de昀椀ned

�(�,��∗) ∶= 1�(��∗)�(�) ∑� ∶�(�)→�(��∗) ∏��∈�(�) ���(��)(����∗(� (�)� (�))) . (A.82)

The homomorphism density of aQ-decorated graph � into a process dependency graphon� can also be de昀椀ned:

�(�,�) ∶= �[Ω�(�)]−1∫Ω�(�) ∏��∈�(�) [∫�0 ���(��)(�)�(��, ��)(��)]�[��]. (A.83)

A sequence of graphs (��∗) converges to the graphon � if

lim�∗→∞ �(�,��∗) = �(�,�). (A.84)
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for every Q-decorated graph �.

Equation A.83 can be simpli昀椀ed with an appropriate choice of R ⊂ Q and �. Let��(�, �) ∶= ∫�0 � (�)�(�, �)(��). Then the homomorphism density of a R-decorated graph� into a graphon � is de昀椀ned:

�(�,�) = �[Ω�(�)]−1∫Ω�(�) ∏��∈�(�) [����(��)(��, ��)]�[��]. (A.85)

If R is a generating system of Q (R is countable and every � ∈ Q can be expressed as a

linear combination of functions in R) and ��(�, �) is (i) linear in � ∈ Q, and (ii) �� ∈[inf{� →}, sup{� →}], for every 昀椀xed (�, �) ∈ Ω2, then the Riesz representation theorem

guarantees the existence of a graphon � such that ��(�, �) ∶= ∫�0 � (�)�(�, �)(��), and

convergence for every � ∈ R is equivalent to convergence for every � ∈ Q (Lovász, 2012,

p. 323). This means that we only need to know values of �� for every � ∈ R to prove

convergence of homomorphism densities for every 昀椀xed Q-decorated graph.

The examples of R provided in Chapter 3 do not satisfy all of these criteria. Speci昀椀cally,

they are not generating systems of Q. They do however, ful昀椀ll the other criteria. Thus, they

demonstrate that block sequences satisfy at least some conditions of convergence (that is,

convergence for a subset of Q).
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